Kabinet výuky obecné fyziky, UK MF Fyzikální praktikum	
Úloha č	
Název úlohy:	
Jméno:	Obor: FOF FAF FMUZV
Datum měření:	Datum odevzdání:

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:....

dne:

1 Pracovné úlohy

- 1. Odmerať tuhosť k piatich pružín statickou metódou.
- 2. Zostrojiť graf závislosti predĺženia pružiny na pôsobiacej sile $\Delta l = \Delta l(F)$
- 3. Odmerať tuhosť k piatich pružín dynamickou metódou.
- 4. Z doby kmitu telesa známej hmotnosti a výchylky pružiny po zavesení tohto telesa určiť miestne tiažové zrychlenie \tilde{g} .
- 5. Zostrojiť grafy závislostí $\omega = \omega(\sqrt{k})$ a $\omega = \omega(\sqrt{1/m})$.
- 6. Pri spracovaní použiť lineárnu regresiu.

2 Teoretická časť

Tuhosť pružiny je veličina, ktorá kvantitatívne popisuje reakciu pružiny na pôsobiacu silu. V praxi sa na jej meranie používajú dve metódy.

Statická metóda je založená na Hookovsky lineárnej odozve pružiny na pôsobenie sily v určitom rozmedzí hodnôt. V tomto rozmedzí sa predpokladá[1], že predĺženie pružiny je priamo úmerné pôsobiacej sile a prevrátená hodnota koeficientu úmernosti je práve tuhosť danej pružiny. Pokiaľ Δl označíme predĺženie pružiny, F pôsobiacu silu a k tuhosť pružiny, dostávame symbolické vyjadrenie predošlého:

$$\Delta l = \frac{1}{k} \cdot F \tag{1}$$

V prípade experimentálnej zostavy v praktiku boli na pružiny vešané závažia. Pôsobiaca sila bola teda rovná tiažovej sile

$$F = mg, \tag{2}$$

pričom mznačí hmotnosť závažia
agtiažové zrýchlenie.

Dalšou možnosťou určenia konštanty tuhosti pružiny je dynamická metóda. Pri tejto sa na pružine zavesené závažie vychýli z rovnovážnej polohy a koná harmonický kmit. Z pohybovej rovnice takejto sústavy vyplýva pre uhlovú frekvenciu kmitov ω výraz[1]

$$\omega = \sqrt{\frac{k}{m}},\tag{3}$$

kde m značí hmotnosť zaveseného závažia
aktuhosť pružiny. Pri tomto modeli považujeme pružinu za nehmotnú. Nakoľko v praktiku je meranou veličinou perióda kmitov
 T, je vhodné si predošlú rovnicu prepísať s pomocou vzťahu
 $\omega = 2\pi/T$ do tvaru

$$T^2 = \frac{4\pi^2}{k} \cdot m \tag{4}$$

Z rovníc (1) a (4) možno vylúčiť hmotnosť závažia a dostávame výraz pre výpočet miestneho tiažového zrýchlenia \tilde{g} na základe nameraných hodnôt predĺženia Δl a periódy T pre známu kombináciu pružiny a závažia:

$$\tilde{g} = \left(\frac{2\pi}{T}\right)^2 \Delta l \tag{5}$$

2.1 Štatistické spracovanie dát

Všetky výsledky priamych meraní sú udávané so strednou kvadratickou chybou (P = 68.27%). Prenos neistoty a relatívna chyba nepriameho merania boli pri štatistických spracovaniach počítané pomocou vzorcov [2]:

$$\delta_g = \sqrt{\left(\left(-0.025\,928 + 1.38 \times 10^{-4}\cos 2\phi(-2\sin 2\phi)\right)\delta_\phi\right)^2 + \left(-3.086 \times 10^{-6}\delta_H\right)^2} \tag{6}$$

$$\eta_k = \eta_\lambda \tag{7}$$

$$\eta_{T^2} = 2\eta_{5T} \tag{8}$$

$$\eta_{\tilde{g}} = \sqrt{\eta_{T^2} + \eta_{\Delta l}} \tag{9}$$

$$\eta_{\tilde{g}} = \eta_{\lambda} \tag{10}$$

$$\eta_{\sqrt{k}} = \frac{1}{2}\eta_k \tag{11}$$

$$\eta_{\omega} = \eta_T \tag{12}$$

$$\eta_m = 2\eta_\lambda \tag{13}$$

$$\eta_k = 2\eta_\lambda \tag{14}$$

 η značí relatívnu chybu, δ absolútnu, λ je koeficient fitu.

Pre ľubovoľnú veličinu s priemernou nameranou hodnotou \overline{x} a chybou δ_x platí zrejme

r

$$\eta_x = \frac{\delta_x}{\overline{x}} \tag{15}$$

Všetky grafy a lineárne regresie boli spracované v programe OriginLab.

3 Výsledky merania

3.1 Experimentálne podmienky

- teplota: $(24,3 \pm 0,1)$ °C
- tlak: $(9,884 \pm 0,001) \times 10^4$ Pa
- vlhkosť: $(23,6\pm0,2)\%$

Chyby hodnôt vyššie boli odhadnuté z premenlivosti údajov na meradle.

Podľa [3] urobme odhad g v závislosti na zemepisnej šírke a nadmorskej výške budovy M. Zemepisná šírka bola za pomoci aplikácie Google Maps odhadnutá na $\phi = (50,0695 \pm 0,0002)^{\circ}$ a nadmorská výška na $H = (244, 4 \pm 1,5)$ m. Na odhad g v m s⁻¹ slúži *Helmertova rovnica*:

$$g = 9,806\,16 - 0,025\,928\cos(2\phi) + (6,9\times10^{-5})\cos^2(2\phi) - (3,086\times10^{-6})H$$

Po dosadení máme s ohľadom na štatistický prenos chyby podľa vzorca (6) $g = (9.81 \pm 0.05) \,\mathrm{m \, s^{-2}}$.

3.2 Určenie tuhosti pružín statickou a dynamickou metódou

Pred začiatkom merania boli pružiny odvážené na elektronických váhach s presnosťou 0,0001 g a ich počiatočné dĺžky l boli odmerané katetometrom (podľa [1] odchýlka merania 0,1 cm). Hodnoty l však nepredstavujú reálne dĺžky nezaťažených pružín, ale hodnoty odčítané zo stupnice katetometra. Nakoľko používanou veličinou je rozdiel zaťaženej a nezaťaženej dĺžky, je tento údaj postačujúci. Súhrn parametrov pružín, ktoré sme si označili písmenami A až E je uvedený v Tab. 1.

Pružina	$\frac{m}{g}$	$\frac{l}{cm}$
A	$6,\!28762\pm0,\!00007$	52,2
В	$6{,}284{}32\pm 0{,}000{}04$	54,7
C	$3{,}89168\pm0{,}00007$	51,7
D	$2{,}43902\pm 0{,}00004$	52,9
E	$5{,}46636\pm0{,}00007$	41,3

Tab. 1: Označenia a charakteristiky pružín

Priebeh samotného merania bol nasledovný: Na každú pružinu sa postupne vešali závažia rôznych hmotností (tie boli určené elektronickými váhami s presnosťou 0,1 g). Závažie sa najprv zavesilo na pružinu a keď sa ustálilo v rovnovážnej polohe, bola katetometrom zmeraná dĺžka zaťaženej pružiny l' (presnejšie opäť iba hodnota na stupnici katetometra). Závažie sa následne rozkmitalo a jeho pohyb sa snímal sonarom s vzorkovacou frekvenciou 25 Hz po dobu 10 s. Z grafického znázornenia dát nameraných sonarom bola odčítaná doba piatich periód pre zvýšenie presnosti merania (hodnoty vyznačené **tučným** písmom označujú, že pri danom meraní neboli kmity závažia dokonale zvislé, a teda zápis zo sonaru menej čitateľný). Zápis z merania predstavujú stĺpce l' a 5T v Tab. 2.

Pri spracovaní statickej metódy určenia tuhostí pružín sa najprv podľa vzťahu (2) vypočítala pôsobiaca sila F a z rovnice $\Delta l = l' - l$ sa určilo predĺženie pružiny (odchýlka merania predĺženia bola odhadnutá na 0,2 cm na základe presnosti merania katetometrom (viď vyššie) ako aj z premenlivosti hodnôt počas merania). Tieto veličiny sú uvedené v Tab. 2 v im zodpovedajúcich stĺpcoch a graficky znázornené na Obr. 1.

Všetkých 5 závislostí sme fitovali lineárnou závislosťou $y = \lambda \cdot x$ s nasledovnými výsledkami:

- $\lambda_A = (1,386 \pm 0,005) \times 10^{-1} \,\mathrm{m \, N^{-1}}$
- $\lambda_B = (1,374 \pm 0,002) \times 10^{-1} \,\mathrm{m}\,\mathrm{N}^{-1}$
- $\lambda_C = (3,36 \pm 0,03) \times 10^{-2} \,\mathrm{m \, N^{-1}}$
- $\lambda_D = (6.71 \pm 0.02) \times 10^{-2} \,\mathrm{m \, N^{-1}}$
- $\lambda_E = (3,015 \pm 0,004) \times 10^{-1} \,\mathrm{m}\,\mathrm{N}^{-1}$

Koeficient lineárnej regresie λ má význam prevrátenej hodnoty tuhosti pružiny, teda $k = 1/\lambda$ a po uvážení prenosu chyby podľa (14) sú určené tuhosti pružín

- $k_A = (7,22 \pm 0,03) \,\mathrm{N} \,\mathrm{m}^{-1}$
- $k_B = (7,28 \pm 0,01) \,\mathrm{N} \,\mathrm{m}^{-1}$
- $k_C = (29.8 \pm 0.2) \,\mathrm{N} \,\mathrm{m}^{-1}$
- $k_D = (14,90 \pm 0,04) \,\mathrm{N}\,\mathrm{m}^{-1}$
- $k_E = (3,317 \pm 0,005) \,\mathrm{N \, m^{-1}}$

pružina	$\frac{m}{[g]}$	$\frac{l'}{[cm]}$	$\frac{5T}{[s]}$	$\frac{F}{[N]}$	$\frac{\Delta l}{[\text{cm}]}$	$\frac{T^2}{[s^2]}$	$\frac{\delta_{T^2}}{[s^2]}$
	30	48,2	$2,\!12$	0,29	4,0	0,18	0,01
	50,1	45,3	2,64	0,49	6,9	0,28	0,01
Α	70,1	42,6	2,96	0,69	$_{9,6}$	0,35	0,01
	80,1	41,4	2,52	0,79	10,8	0,25	0,01
Pružina A B C D E	100	$38,\!6$	$3,\!36$	0,98	$13,\!6$	0,45	0,02
	50,1	48,0	2,64	0,49	6,7	0,28	0,01
	70,1	45,3	$3,\!12$	0,69	$_{9,4}$	0,39	0,01
В	80,1	43,9	$2,\!64$	0,79	10,8	0,28	0,01
	100	41,2	3,72	0,98	$13,\!5$	0,55	0,02
	120	$_{38,5}$	4,08	1,18	16,2	0,67	0,02
	70,1	49,3	1,52	0,69	2,4	0,092	0,007
	80,1	49,1	$1,\!64$	0,79	2,6	0,108	0,008
\mathbf{C}	100	48,4	$1,\!8$	0,98	3,3	0,130	0,009
	120	47,8	2,0	1,18	$_{3,9}$	0,16	0,01
	130	47,4	2,08	1,28	4,3	0,17	0,01
	70,1	48,3	$2,\!28$	0,69	4,6	0,21	0,01
	80,1	47,7	2,36	0,79	5,2	0,22	0,01
D	100	46,3	2,56	0,98	6,6	0,26	0,01
	120	45,0	2,84	1,18	$7,\!9$	0,32	0,01
	130	44,3	2,96	1,28	8,6	0,35	0,01
	20	35,4	$2,\!56$	0,20	5,9	0,26	0,01
	30	32,5	3,08	0,29	8,8	0,38	0,01
F	50,1	26,5	3,92	0,49	14,8	0,61	0,02
Ľ	70,1	20,5	4,64	0,69	20,8	0,86	0,02
	80,1	17,6	4,92	0,79	23,7	0,97	0,02
	100	11,8	$5,\!48$	0,98	29,5	1,20	$0,\!03$

Tab. 2: Namerané veličiny a veličiny potrebné pre obe metódy určenia tuhosti

Spracovanie dynamickej metódy využívalo vzorec (4) a teda veličiny vynášané do grafu boli hmotnosť závažia m a štvorec periódy kmitov T^2 . V posledných dvoch stĺpcoch Tab. 2 sú uvedené jednak namerané a prepočítané hodnoty štvorca periódy ako aj ich neistoty (zo vzorkovacej frekvencie sonaru vyplýva presnosť merania času 0,04 s). Grafické znázornenie závislosti $T^2 = T^2(m)$ je na Obr. 2.

Hodnoty v grafe boli opäť fitované lineárnou funkciou $y = \lambda \cdot x$, pričom podľa (4) je $k = 4\pi^2/\lambda$. S ohľadom na štatistický vzorec (14) sú zistené hodnoty λ a vyplývajúce hodnoty k nasledovné:

- $\lambda_A = (4,4 \pm 0,5) \,\mathrm{s}^2 \,\mathrm{kg}^{-1}, \, k_A = (9 \pm 1) \,\mathrm{N} \,\mathrm{m}^{-1}$
- $\lambda_B = (5,3 \pm 0,5) \,\mathrm{s}^2 \,\mathrm{kg}^{-1}, \, k_B = (7,5 \pm 0,5) \,\mathrm{N \, m^{-1}}$
- $\lambda_C = (1,330 \pm 0,007) \,\mathrm{s}^2 \,\mathrm{kg}^{-1}, \, k_C = (29,7 \pm 0,2) \,\mathrm{N \, m^{-1}}$
- $\lambda_D = (2.71 \pm 0.04) \,\mathrm{s}^2 \,\mathrm{kg}^{-1}, \, k_D = (14.6 \pm 0.2) \,\mathrm{N \, m^{-1}}$
- $\lambda_E = (12.14 \pm 0.07) \,\mathrm{s}^2 \,\mathrm{kg}^{-1}, \, k_E = (3.25 \pm 0.02) \,\mathrm{N \, m^{-1}}$

3.3 Výpočet miestneho tiažového zrýchlenia

Tiažové zrýchlenie \tilde{g} možno určiť v zásade dvoma spôsobmi. Prvým je priame dosadenie do vzťahu (5) pre všetky merané kombinácie pružiny a závažia a následné štatistické spracovanie. Vypočítané hodnoty \tilde{g} , ako aj ich neistoty vyplývajúce z rovnice (9) sú uvedené v Tab. 3.

Obr. 1: Závislosti $\Delta l = \Delta l(F)$ pre pružiny A až E

pružina	$\frac{m}{[g]}$	$\frac{\tilde{g}}{[m s^{-2}]}$	$\frac{\delta_{\tilde{g}}}{[\mathrm{ms}^{-2}]}$	pružina	$\frac{m}{[g]}$	$\frac{\tilde{g}}{[m s^{-2}]}$	$\frac{\delta_{\tilde{g}}}{[m s^{-2}]}$
	30	8,8	0,7	C	120	$9,\!6$	0,8
	50,1	$_{9,8}$	0,5		130	$_{9,8}$	0,7
А	70,1	$14,\!9$	0,7		70,1	8,7	$0,\!6$
	80,1	9,4	0,4		80,1	9,2	$0,\!6$
	100	$15,\!3$	0,8	D	100	$_{9,9}$	0,6
В	50,1	9,5	0,5		120	9,7	0,5
	70,1	9,5	0,4		130	9,7	0,5
	80,1	$15,\!3$	0,8	- E	20	8,9	0,5
	100	9,6	0,3		30	9,2	$0,\!4$
	120	9,6	0,3		50,1	9,5	0,3
С	70,1	10	1		70,1	9,5	0,3
	80,1	9	1		80,1	9,7	0,2
	100	10,1	0,9		100	9,7	0,2

Tab. 3: Určené hodnoty tiažového zrýchlenia pre všetky kombinácie pružín a závaží

Pri štatistickom spracovaní hodnô
t \tilde{g} bola ako "chyba meracieho prístroja" uvažovaná priemerná hodnota
 $\delta_{\tilde{g}}$ a merania označené v Tab. 3 **tučným** písmom boli vylúčené ako hrubé chyby. Výsledkom spracovania je hodnota $\tilde{g} = (9.5 \pm 0.3) \,\mathrm{m \, s^{-2}}$.

Ďalšou možnou metódou určenia miestneho tiažového zrýchlenia bolo vyniesť do grafu závislosť $T^2 = T^2(\Delta l)$,

Obr. 2: Závislosti $T^2 = T^2(m)$ pre pružiny A až E

ktorá má podľa rovnice (5) byť lineárna. Graf je na Obr. 3, kde je vynesená aj priamka lineárnej regresie $y = \lambda \cdot x$ s koeficientom $\lambda = (4,12 \pm 0,02) \,\mathrm{s}^2 \,\mathrm{m}^{-1}$ (hrubé chyby označené v grafe rozdielnym symbolom neboli do fitu započítané, chybové úsečky sú dostatočne dobre aproximované veľkosťou bodov). Z rovnice (5) vyplýva $\tilde{g} = 4\pi^2/\lambda$ a pri odhade chyby podľa vzorca (10) dostávame $\tilde{g} = (9,60 \pm 0,04) \,\mathrm{m \, s}^{-2}$.

3.4 Overenie platnosti závislosti $\omega = \sqrt{k/m}$

Z použitých závaží sa tri vyskytli pri meraní s každou pružinou (konkrétne 70,1 g, 80,1 g a 100 g). Pre tieto tri hmotnosti teda môžme overiť predpokladanú linearitu závislosti $\omega = \omega(\sqrt{k})$. V Tab. 4 sú uvedené jednak odmocniny tuhostí pružín určených statickou metódou (ich chyby boli počítané zo vzorca (11)) a jednak hodnoty uhlovej frekvencie z dynamickej metódy pre konkrétne kombinácie pružín a závaží (vyplývajúce z $\omega = 2\pi/T$) spolu s chybami podľa vzorca (12).

Hodnoty z Tab. 4 sú graficky znázornené na Obr. 4, kde boli preložené lineárnym polynómom bez konštantného člena. Koeficienty fitu λ by mali zodpovedať odmocnicne z prevrátenej hodnoty hmotnosti závažia (teda $m = 1/\lambda^2$). Po uvážení prenosu neistoty podľa (13) teda dostávame:

- $\lambda_{70.1} = (3.8 \pm 0.1) \,\mathrm{kg}^{-1/2}, \, m_{70.1} = (69 \pm 4) \,\mathrm{g}$
- $\lambda_{80.1} = (3.6 \pm 0.1) \,\mathrm{kg}^{-1/2}, \, m_{80.1} = (80 \pm 5) \,\mathrm{g}$
- $\lambda_{100} = (3,24 \pm 0,09) \,\mathrm{kg}^{-1/2}, \, m_{100} = (95,3 \pm 5,5) \,\mathrm{g}$

Obr. 3: K určeniu miestneho tiažového zrýchlenia lineárnou regresiou

závažie	$\frac{\sqrt{k}}{[N^{1/2} m^{-1/2}]}$	$\frac{\delta_{\sqrt{k}}}{[\mathrm{N}^{1/2}\mathrm{m}^{-1/2}]}$	$\frac{\omega}{[rad s^{-1}]}$	$\frac{\delta_{\omega}}{[\mathrm{rad}\mathrm{s}^{-1}]}$
	2,687	0,006	12,5	0,3
	2,698	0,002	10,1	0,2
$70,1\mathrm{g}$	5,46	0,02	20,7	0,8
	3,860	0,005	$13,\!8$	$0,\!4$
	1,821	0,001	6,77	0,09
	2,687	0,006	9,3	0,2
	2,698	0,002	11,9	0,3
$70,1\mathrm{g}$	5,46	0,02	19,2	0,7
	3,860	0,005	13,3	0,3
	1,821	0,001	$6,\!39$	0,08
	2,687	0,006	10,6	0,2
$70,1\mathrm{g}$	2,698	0,002	8,4	0,1
	5,46	0,02	$17,\!45$	$0,\!58$
	3,860	0,005	12,3	0,3
	1,821	0,001	5,73	0,06

Tab. 4: Tabuľka hodnôt potrebných pre znázornenie závislosti $\omega=\omega(\sqrt{k})$

Podobne je možné vyniesť do grafu závislosť $\omega=\omega(\sqrt{1/m}).$ Z Tab. 2 sa zobrali odmocniny prevrátených

Obr. 4: Graf závislosti $\omega = \omega(\sqrt{k})$ pre tri rôzne závažia

hodnôt hmotností $\sqrt{1/m}$ všetkých závaží pre všetkých päť pružín a podobne ako v prípade vyššie sa dopočítali veličiny ω a δ_{ω} (viď Tab. 5). Grafické znázornenie týchto závislostí je na Obr. 5.

Závislosti v grafe na Obr. 5 sú preložené priamkami vedenými cez počiatok, pričom ich (fitovaná) smernica λ má význam odmocniny z tuhosti danej pružiny. Výsledky lineárnej regresie teda s ohľadom na prenos chyby podľa (14) sú nasledovné:

- $\lambda_A = (87 \pm 5) \,\mathrm{g}^{1/2} \,\mathrm{s}^{-1}, \, k_A = (7.6 \pm 0.8) \,\mathrm{N \, m^{-1}}$
- $\lambda_B = (89 \pm 5) \,\mathrm{g}^{1/2} \,\mathrm{s}^{-1}, \, k_B = (8.0 \pm 0.9) \,\mathrm{N \, m^{-1}}$
- $\lambda_C = (127.7 \pm 0.5) \,\mathrm{g}^{1/2} \,\mathrm{s}^{-1}, \, k_C = (29.8 \pm 0.2) \,\mathrm{N} \,\mathrm{m}^{-1}$
- $\lambda_D = (119 \pm 1) \,\mathrm{g}^{1/2} \,\mathrm{s}^{-1}, \, k_D = (14.2 \pm 0.3) \,\mathrm{N} \,\mathrm{m}^{-1}$
- $\lambda_E = (55,5\pm0,4) \,\mathrm{g}^{1/2} \,\mathrm{s}^{-1}, \, k_E = (3,08\pm0,04) \,\mathrm{N} \,\mathrm{m}^{-1}$

4 Diskusia výsledkov

Tuhosti piatich pružín určené statickou metódou majú relatívnu odchýlku pohybujúcu sa okolo $\eta_{stat} \approx 0.3\%$, hodnoty vyplývajúce z metódy dynamickej sú vo všeobecnosti o rád menej presné (v priemere $\eta_{dyn} \approx 4\%$).

pružina	$\frac{\sqrt{1/m}}{[\mathrm{g}^{-1/2}]}$	$\frac{\omega}{[\mathrm{rad}\mathrm{s}^{-1}]}$	$\frac{\delta_{\omega}}{[\mathrm{rad}\mathrm{s}^{-1}]}$	pružina	$\frac{\sqrt{1/m}}{[\mathrm{g}^{-1/2}]}$	$\frac{\omega}{[\mathrm{rad}\mathrm{s}^{-1}]}$	$\frac{\delta_{\omega}}{[\mathrm{rad}\mathrm{s}^{-1}]}$
	$0,\!183$	14,8	0,4	C	0,091	15,7	$0,\!5$
	0,141	11,9	0,3	Ũ	0,088	15,2	$0,\!4$
А	0,119	12,5	0,3		0,119	13,8	0,4
	0,112	9,3	0,2		0,112	13,3	$0,\!3$
	0,100	$10,\!6$	0,2	D	$0,\!100$	12,3	$0,\!3$
	0,141	11,9	0,3		0,091	11,1	0,2
	$0,\!119$	10,1	0,2		0,088	10,6	$_{0,2}$
В	0,112	11,9	$0,\!3$	- E	0,224	12,3	0,3
	0,100	8,4	0,1		0,183	10,2	0,2
	0,091	7,7	0,1		$0,\!141$	8,0	$_{0,1}$
С	0,119	20,7	0,8		0,119	6,77	0,09
	0,112	19,2	0,7		0,112	6,39	0,08
	0,100	$17,\!5$	$0,\!6$		$0,\!100$	5,73	0,06

Tab. 5: Tabuľka hodnôt potrebných pre znázornenie závislosti $\omega = \omega(\sqrt{1/m})$

Obr. 5: Graf závislosti $\omega=\omega(\sqrt{1/m})$ pre všetkých 5 pružín

U pružín A a B sa navyše tuhosti zistené rôznymi metódami nezhodujú ani v rámci chyby. Možnou príčinou je fakt, že model, ktorý používa dynamická metóda predpokladá nehmotnú pružinu, resp. pružinu zanedbateľnej hmotnosti. Skutočne, hmotnosti pružín uvedené v Tab. 1 naznačujú, že prvé dve pružiny sú zo

všetkých použitých najhmotnejšie. Aj keď korelácia medzi hmotnosťou pružiny a zhodou výsledkov dvoch metód nie je dokonalá (napr. pružina D je najľahšia, ale rozdiel hodnôt k_D je väčší, než ten pri pružinách C alebo E, ktoré sú o 1 – 3 g ťažšie), predpoklad nehmotnej pružiny možno považovať iba za aproximáciu. Predpokladom statickej metódy je lineárna odpoveď pružiny na pôsobiacu silu. Z grafu na Obr. 1 možno usúdiť, že táto podmienka bola splnená veľmi dobre, a teda máme dôvod považovať hodnoty tuhostí pružín určené touto metódou za vierohodnejšie.

Čo sa týka výpočtu miestneho tiažového zrýchlenia \tilde{g} , bol vykonaný dvoma rôznymi spôsobmi. Výpočet zahŕňajúci priame dosadenie do vzťahu (5) dal výsledok s relatívnou odchýlkou $\eta_{dos} \approx 3\%$, zatiaľ čo výpočet s využitím lineárnej regresie mal relatívnu neistotu $\eta_{lr} \approx 0.4\%$. Rozdiel medzi odchýlkami možno vysvetliť jednak rozdielnymi metódami odhadu štatistickej chyby, ako aj faktom, že lineárny fit bol vážený, čo umožňovalo prejav individuálnych neistôt merania periódy, kdežto pri dosadení a štatistickom spracovaní sa tieto chyby spriemerovali. V oboch prípadoch sa ale výsledky líšia od hodnoty vypočítanej z Helmertovej rovnice v časti 3.1 o $0.2 - 0.3 \,\mathrm{m\,s^{-2}}$. Môžeme teda predpokladať, že obe hodnoty \tilde{g} sú zaťažené systematickou chybou. Súdiac z úvah v predošlom odseku je systematická odchýlka spôsobená veličinami nameranými počas merania dynamickou metódou, veľmi pravdepodobne kvôli aproximatívnej povahe jej teoretického modelu.

Z grafov na Obr. 4 a Obr. 5 môžeme vyvodiť, že overovaná závislosť $\omega = \sqrt{k/m}$ platí s ohľadom na fakt, že z vyššie diskutovaných dôvodov nie je korektné považovať merania pre pružiny A a B za smerodajné. Pre ostatné pružiny je závislosť v oboch argumentoch splnená veľmi dobre. Fit závislosti $\omega = \omega(\sqrt{k})$ dal hmotnosti troch použitých závaží zhodné v rámci odchýlky (tá však bola značná - okolo 6%, teda táto metóda nie je vhodná na určenie hmotností závaží), nafitované tuhosti pružín cez závislosť $\omega = \omega(\sqrt{1/m})$ sa s tuhosťami zo statickej metódy takisto dobre zhodovali.

5 Záver

Úlohou práce v praktiku bolo odmerať tuhosť piatich pružín dvoma metódami - statickou a dynamickou. Výsledné tuhosti sú prehľadne zhrnuté v nasledovnom zozname:

• tuhosti pružín určené statickou metódou

$$-k_A = (7,22 \pm 0,03) \,\mathrm{N}\,\mathrm{m}^{-1}$$

$$-k_B = (7,28 \pm 0,01) \,\mathrm{N}\,\mathrm{m}^{-1}$$

$$-k_C = (29.8 \pm 0.2) \,\mathrm{N \, m^{-1}}$$

- $k_D = (14,90 \pm 0,04) \,\mathrm{N}\,\mathrm{m}^{-1}$
- $-k_E = (3,317 \pm 0,005) \,\mathrm{N \, m^{-1}}$
- tuhosti pružín určené dynamickou metódou
 - $k_A = (9 \pm 1) \text{ N m}^{-1}$ $k_B = (7,5 \pm 0,5) \text{ N m}^{-1}$ $k_C = (29,7 \pm 0,2) \text{ N m}^{-1}$ $k_D = (14,6 \pm 0,2) \text{ N m}^{-1}$ $k_E = (3,25 \pm 0,02) \text{ N m}^{-1}$

Ďalšou úlohou bolo určenie miestneho tiažového zrýchlenia z nameraných údajov. Na výpočet boli použité dve metódy. Metóda priameho dosadenia dala výsledok $\tilde{g} = (9,5 \pm 0,3) \,\mathrm{m \, s^{-2}}$, lineárna regresia dala výsledok $\tilde{g} = (9,60 \pm 0,04) \,\mathrm{m \, s^{-2}}$.

V závere protokolu bola dvoma grafmi overená platnosť závislosti uhlovej frekvencie harmonických kmitov zaťaženej pružiny na jej tuhosti a hmotnosti závažia. Voči výsledkom merania bola vykonaná diskusia.

Zoznam použitej literatúry

- [1] Študijný text k úlohe http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_102.pdf. aktuálne k 30.4. 2018.
- [2] J. BROŽ a kol. Základy fyzikálních měření I. Praha: SPN, 1967.
- [3] Dr. D.G. Simpson. Physics recreations: Helmert's equation http://www.pgccphy.net/rec/ rec002-helmert.pdf. aktuálne k 29.3. 2018.