Oddělení fyzikálních prakt $\mathbf{PRAKTIKUM}$ I	ik při Kabinetu výuky obec V	né fyziky MFF UK
Úloha č. 17		
Název: Zeemanův jev		
Pracoval: Štěpán Roučka	stud. skup. FOF	dne 1. 11. 2005
Odevzdal dne:	vráceno:	
Odevzdal dne:	vráceno;	
Odevzdal dne:		
Posuzoval: Připomínky:	dne výsledek klas	ifikace

Pracovní úkol

- 1. Proměřte závislost magnetické indukce na proudu magnetu.
- 2. Ze známé hodnoty indexu lomu určete velikost disperzní oblasti Lummerovy-Gehrckovy desky.
- Změřte rozštěpení červené spektrální čáry kadmia pro několik hodnot magnetické indukce. Rozštěpení pozorujte ve směru kolmém k magnetickému poli. Zpracujte graficky.
- 4. Určete polarizaci složek rozštěpené čáry. Totéž proveďte při pozorování ve směru magnetického pole.
- 5. Kvalitativně popište výsledky pozorování Zeemanova jevu na zelené čáře kadmia ($\lambda = 508.6$ nm).

Teorie

Při působení magnetického pole na atom dochází k narušení symetrie a původně degenerované energetické hladiny se rozštěpují. Tento jev lze vysvětlit také v řeči klasické fyziky. Pokud budeme pokládat elektrony za harmonické oscilátory, existují pro elektrony v magnetickém poli pouze tři stacionární trajektorie. Jedna z nich je lineární, rovnoběžná s vektorem magnetické indukce a odpovídá jí energie stejná jako při vypnutém magnetickém poli. Zbývající dvě jsou kruhové v rovině kolmé na směr indukce. Energie těchto stavů se liší a tím pádem i vlnové délky světla vyzařovaného výbojkou v magnetickém poli budou rozdělené. Vlnové délky těchto čar jsou dle [1]

$$\lambda_{1,2} = \lambda_0 \pm \Delta \lambda$$
, $\Delta \lambda = \frac{e}{m_e} \frac{\lambda_0^2 B}{4\pi c}$. (1)

kde λ_0 je vlnová délka nevychýlené čáry.

Jako disperzního prvku je použito Lummerovy-Gehrckeovy desky. Velikost disperzní oblasti Lummerovy-Gehrckeovy tloušťky d vyrobené z materiálu o indexu lomu N je určena vztahem

$$\Delta \lambda_D = \frac{\lambda^2}{2d\sqrt{N^2 - 1}},\tag{2}$$

kde λ značí vlnovou délku použitého světla. Ze znalosti disperzní oblasti lze potom vypočíst rozštěpení čar $\Delta\lambda$ dle vztahu

$$\Delta \lambda = \frac{x}{y} \Delta \lambda_D \,, \tag{3}$$

I[mV]	B[T]	I[mV]	B[T]
0	0.00	8.0	0.74
2	0.14	9.0	0.80
3	0.26	10.0	0.84
4.0	0.36	11.0	0.88
5.0	0.47	12.0	0.91
6.0	0.56	13.0	0.94
7.0	0.65		

Tabulka 1: Kalibrace magnetu

kde x značí střední hodnotu vzdálenosti odštěpených čar od maxima a y značí střední hodnotu vzdáleností sousedních maxim.

$$N = 1.44263 + \frac{7.065}{\lambda - 144} \tag{4}$$

Měření

Byla proměřena závislost magnetického pole na proudu tekoucím magnetem. Závislost jsem aproximoval polynomem čtvrtého řádu, který použiji jako kalibrační křivku k výpočtu magnetického pole ze známého proudu. Změřené hodnoty jsou zapsány v tabulce 1 a grafické znázornění aproximace je v grafu 1.

Byla použita Lumerova-Gehrckeova deska o rozměrech

$$d = 4.04 \,\mathrm{mm}$$
, $l = 106 \,\mathrm{mm}$.

Pro červenou čáru kadmia o vlnové délce $\lambda=643.8$ dle [2] jsem užitím vztahu (2) určil velikost disperzní oblasti

$$\Delta \lambda_D = 0.0484 \,\mathrm{nm}$$

Dále byly proměřeny polohy interferenčních maxim. Naměřená data jsou uvedena v tabulce 2 a graficky znázorněna v grafu 2. Uvedené řády maxim jsou vztaženy k nejvyššímu pozorovatelnému řádu a číslovány v opačném smyslu, než reálné řády maxim. Absolutní hodnoty řádů maxim jsou přibližně $13.3 \cdot 10^3$, přesněji je však na základě zadaných parametrů nelze určit a proto by standartní číslování maxim nedávalo smysl.

Bylo pozorováno rozštěpení spektrálních čar pro tři různé magnetizační proudy $I = \{6.0; 10.0; 12.6\}$ A. Pro každý proud jsem proměřil rozštěpení

řád	x[rel.]	řád	x[rel.]
0	3.00	9	1.44
1	2.75	10	1.33
2	2.53	11	1.21
3	2.33	12	1.09
4	2.15	13	0.99
5	1.98	14	0.90
6	1.83	15	0.80
7	1.71	16	0.70
8	1.57	17	0.61
		18	0.51

Tabulka 2: Polohy interferenčních maxim

šesti sousedních čar. Naměřené hodnoty jsem užitím vztahu 3 přepočetl na vlnové délky. Výsledky jsou zapsány v tabulkách 3, 4 a 5. Střední hodnoty rozštěpení a odhad jejich disperze jsou uvedeny v přehledené tabulce 6. Ze vztahu 1 plyne lineární závislost rozštěpení na intenzitě magnetického pole. Z koeficientu úměrnosti lze tedy při známé rychlosti světla určit měrný náboj elektronu. Koeficient byl určen lineárním fitem programu gnuplot. Výsledek fitu je graficky znázorněn v grafu 2. Odhad chyby určený program je přibližně 0.3%, což je zřejmě silně podhodnocená hodnota. Chyba naměřených hodnot je řádově 10%. Odhaduji, že rozptyl výsledku bude v prvním přiblížení nepřímo úměrný odmocnině z počtu hodnot. Pro hodnotu měrného náboje potom dostávám výsledek

$$e/m_e = (1.69 \pm 0.10) \cdot 10^{11} \,\mathrm{C \cdot kg^{-1}}$$

rel. řád	0	1	2	3	4	5
x_1 [rel.]	3.11	2.80	2.57	2.36	2.19	2.02
x_2 [rel.]	3.03	2.75	2.53	2.32	2.15	1.99
x_3 [rel.]	2.97	2.70	2.48	2.29	2.11	1.95
y[rel.]	0.28	0.25	0.22	0.19	0.17	0.16
x[rel.]	0.07	0.05	0.04	0.03	0.04	0.04
$\Delta\lambda[\text{pm}]$	12	10	10	9	12	11

Tabulka 3: Rozštěpení spektrálních čar pro $B=0.59\,\mathrm{T}$

rel. řád	0	1	2	3	4	5
x_1 [rel.]	3.15	2.85	2.59	2.38	2.21	2.05
x_2 [rel.]	3.04	2.75	2.52	2.32	2.15	1.99
x_3 [rel.]	2.94	2.68	2.46	2.27	2.11	1.94
y[rel.]	0.29	0.26	0.22	0.19	0.17	0.16
x[rel.]	0.11	0.08	0.06	0.05	0.05	0.05
$\Delta\lambda[\text{pm}]$	18	16	15	14	15	17

Tabulka 4: Rozštěpení spektrálních čar pro $B=0.86\,\mathrm{T}$

rel. řád	0	1	2	3	4	5
x_1 [rel.]	3.18	2.86	2.61	2.40	2.23	2.06
x_2 [rel.]	3.05	2.77	2.54	2.33	2.16	2.00
x_3 [rel.]	2.95	2.69	2.47	2.27	2.10	1.95
y[rel.]	0.28	0.26	0.22	0.19	0.17	0.16
x[rel.]	0.12	0.08	0.07	0.06	0.06	0.06
$\Delta\lambda[\text{pm}]$	20	16	15	17	19	17

Tabulka 5: Rozštěpení spektrálních čar pro $B=0.95\,\mathrm{T}$

Byla pozorována polarizace vyzařovaného světla pomocí polarizátoru. Při pohledu ze směru kolmého na vektor magnetické indukce jsem ověřil lineární polarizaci všech čar, přičemž polarizace hlavního svazku byla rovnoběžná s indukcí a kolmá na polarizaci odštěpených složek. Při pohledu ve směru indukce vymizel nevychýlený svazek. Pomocí čtvrtvlnné destičky a polarizátoru jsem pozoroval kruhovou polarizaci vychýlených složek. Tyto složky měly polarizaci v opačném smyslu. Pozorování jsou ve shodě s klasickým modelem elektronu jako harmonického oscilátoru.

Byl pozorován Zeemanův jev na zelené čáře kadmia $\lambda = 508.6$ nm. Na této čáře by měl být pozorovatelný anomální Zeemanův jev. Kromě normálního Zeemanova jevu však bylo viditelné pouze zvětšování šířky čar se

$I[\mathbf{A}]$	B[T]	$\Delta\lambda[\text{pm}]$
6.0	0.57	10.5 ± 1.2
10.0	0.84	15.6 ± 1.3
12.6	0.93	17.3 ± 1.8

Tabulka 6: Závislost rozštěpení na magnetickém poli

vzrůstajícím magnetickým polem, což může svědčit o rozštěpení na úrovni nižší než je rozlišení použitého zařízení.

Diskuse

Všechny výsledky kvalitativně odpovídají teoretickým předpokladům. Určená hodnota měrného náboje odpovídá tabelované hodnotě $e/m_e = 1.76 \cdot 10^{11} \,\mathrm{C} \cdot \mathrm{kg}^{-1}$ a je také ve shodě s hodnotou $e/m_e = (1.69 \pm 0.21)10^{11} \,\mathrm{C} \cdot \mathrm{kg}^{-1}$ určenou v [3]. Největším zdrojem chyb při měření bylo nepřesné odečítaní maxim. Pro přesnější proměření a tím i přesnější určení měrného náboje elektronu by bylo vhodné proměřit rozštěpení pro větší rozsah intenzit magnetického pole.

Závěr

Byl pozorován Zeemanův jev na červené a zelené spektrální čáře kadmia. Byla změřena závislost rozštěpení na intenzitě magnetického pole a z této závislosti byla určena hodnota měrného náboje elektronu

$$e/m_e = (1.69 \pm 0.10) \cdot 10^{11} \,\mathrm{C \cdot kg^{-1}}$$
.

Reference

- Studijní texty, úloha 17: http://physics.mff.cuni.cz/vyuka/zfp/ a materiály v praktiku
- [2] Mikulčák, J., Klimeš, B., Široký, J., Šůla, V., Zemánek, F.: Matematické fyzikální a chemické tabulky. Prometheus, Praha 1997.
- [3] Roučka, Š.: Určení měrného náboje elektronu z charakteristik magnetronu, úloha 13, praktikum IV. Praha 2005

Obrázek 1: Kalibrace magnetu

Obrázek 2: Polohy interferenčních maxim

Obrázek 3: Závislost rozštěpení na magnetické indukci