## 1. Zadání

#### 1. 1. Pracovní úkol

V této úloze se používá zářič  ${}^{90}$ Sr, který se rozpadá podle schématu na Obr. 1. Spektrum emitovaných elektronů je superpozicí dvou  $\beta$ -spekter a absorpce bude mít tvar

$$N(d\rho) = N^{(1)}(0)exp\left[-\frac{\mu(E_0^{(1)})}{\rho}d\rho\right] + N^{(2)}(0)exp\left[-\frac{\mu(E_0^{(2)})}{\rho}d\rho\right] + N_B$$
(1)

Kde N<sup>(1)</sup>(0) resp. N<sup>(2)</sup>(0) je počet elektronů z 1. resp. 2. rozpadu registrovaný za zvolený interval,  $E_0^{(1)}$  a  $E_0^{(2)}$  je maximální energie 1. resp. 2. β-spektra a N<sub>B</sub> je pozadí.

Vaším úkolem je určit hodnoty  $E_0^{(1)}$  a  $E_0^{(2)}$  z naměřené absorpční křivky a to jak z absorpčních koeficientů, tak z maximálních doletů.

#### 1.2. Pomůcky

K dispozici budete mít okénkový Geiger-Müllerův detektor, soupravu s čítačem a sadu hliníkových absorbátorů. Vnější pozadí bude redukováno olověným stíněním zářiče-absorbátoru-detektoru.

# 2. Teoretický úvod<sup>1</sup>

<sup>90</sup>Sr se β<sup>-</sup>-rozpadem rozpadá na <sup>90</sup>Y a to potom dalším β<sup>-</sup>-rozpadem na <sup>90</sup>Zr (viz *Obr. 1*). Těmito rozpady jsou emitovány elektrony o energiích  $10^4 - 10^7$  eV, při jejichž průchodu látkou může dojít k některému z následujících dějů:

- Pružné srážky elektronů s jádry.
- Interakce emitovaných elektronů s atomárními elektrony, které vedou k ionizaci nebo excitaci atomů.

Při těchto dějích se část elektronů zbrzdí až na tepelné energie, část se odchýlí. Po průchodu látkou proto pozorujeme menší počet elektronů vzniklých  $\beta^-$ -rozpadem, než kdyby elektrony před detekcí žádnou látkou neprocházely. Z tohoto důvodu nazýváme toto zeslabení signálu absorpcí.

Tvar absorpční křivky závisí na energetickém spektru absorbovaných elektronů. Pro elektrony se spojitým spektrem můžeme použít vztah

$$N(d\rho) = N(0)exp\left[-\frac{\mu}{\rho}d\rho\right],\tag{2}$$

kde  $N(d\rho)$  je počet elektronů registrovaných za určitý čas při použití absorbátoru tloušťky *d* a hustoty  $\rho$  a  $\mu$  je konstanta pro daný zářič a absorbující materiál zvaná absorpční koeficient. Absorpční koeficient  $\mu$  můžeme využít k výpočtu maximální energie  $E_0 \beta$ -spektra:

$$E_0[MeV] = \left(\frac{\mu}{22\rho} [cm^2 g^{-1}]\right)^{-\frac{3}{4}}$$
(3)

Zjistíme-li maximální dolet  $R_{\beta}$  elektronů (na základě toho, za jakou tloušťku *d* absorbátorů se emitované záření již nedostane), můžeme pro výpočet maximální energie  $E_0$  využít některý z empirických vzorců:

$$E_0[MeV] = \left(\frac{R_{\beta}\rho}{0,407}[gcm^{-2}]\right)^{\frac{1}{1.38}} \text{ pro } 0,15 \text{ MeV} < E_0 < 0,8 \text{ MeV}$$
(4)

$$E_0[MeV] = \frac{R_\beta \rho[gcm^{-2}] + 0.183}{0.542} \text{ pro } 0.8 \text{ MeV} < E_0$$
(5)



Obr. 1: Schéma rozpadu 90Sr

<sup>&</sup>lt;sup>1</sup> Napsáno na základě [1]

#### 3. Výsledky měření

Dospod uzavíratelné komory jsme umístili  $\beta$ -zářič <sup>90</sup>Sr. Elektrony vzniklé  $\beta$ -rozpadem jsme detekovali Geiger-Müllerovým detektorem umístěným v horní části komory. Mezi zářič a detektor jsme jako absorbátor pokládali hliníkové plíšky o známé plošné hmotnosti  $d\rho$  v mgcm<sup>-2</sup> a měřili závislost času *t* potřebného k detekci tisíce částic na hodnotě  $d\rho$ . Naměřené hodnoty jsou uvedeny v *Tab. 1* v *Příloze*. Při opakovaných měřeních jsou časy *t* indexovány *1, 2, 3*.

Vztahem  $N_i(d\rho) = \frac{1000}{t_i}$  pro i = 1, 2, 3 jsme určili počet částic generovaných za dobu 1 s. Relativní chybu této veličiny považujeme za rovnu poissonovské relativní chybě detekce tisíce částic, která činí  $\frac{\sqrt{1000}}{1000} \cong 0,032$ . Hodnotu  $N(d\rho)$  jsme spočetli aritmetickým průměrem hodnot  $N_i(d\rho)$  a její chybu stanovili metodou přenosu chyb dle [2].

Dále uvažujeme, že absorpci emitovaných elektronů můžeme popsat rovnicí (1) a že energie  $E_0^{(1)}$ a  $E_0^{(2)}$  jsou značně odlišné (např.  $E_0^{(2)} > E_0^{(1)}$ ). Absorpční koeficient tvrdší složky  $\mu \left( E_0^{(2)} \right)$  můžeme tedy získat lineární regresí závislosti veličiny  $\ln[N(d\rho) - N_B]$  na  $d\rho$  pro větší tloušťky absorbátoru, kde  $N_B$  je pozadí. To jsme proměřili tak, že jsme mezi zářič a detektor umístili olověnou desku a dále postupovali stejně jako u měření  $N(d\rho)$ . Hodnota pro pozadí je uvedena v *Tab. 1*.

Závislost  $\ln[N(d\rho) - N_B]$  na  $d\rho$  je vykreslena v *Grafu 1* a lineární část grafu proložena regresní přímkou. Její rovnice má tvar odvozený z (1):  $\ln[N(d\rho) - N_B] = B^{(2)} + A^{(2)} \cdot d\rho$ , kde  $B^{(2)} = \ln N^{(2)}(0)$  a  $A^{(2)} = -\frac{\mu(E_0^{(2)})}{\rho}$ . Výsledek regrese:  $A^{(2)} = (-5,5 \pm 0,3)cm^2g^{-1}$ ,  $B^{(2)} = 4,3 \pm 0,2$ . Relativní chyba každého koeficientu je dána součtem relativní chyby regrese a maximální relativní chyby veličiny  $\ln[N(d\rho) - N_B]$ . Maximální energii tvrdší části vypočteme ze vztahu (3), kam za  $-\frac{\mu}{\rho}$  dosadíme vypočtenou hodnotu  $A^{(2)}$ . Chybu určíme metodou přenosu chyb dle [2]:





Absorpční koeficient měkčí složky  $\mu\left(E_0^{(1)}\right)$  získáme lineární regresí závislosti veličiny  $\ln[N(d\rho) - N_B - N_t(d\rho)]$  na  $d\rho$ .  $N_t(d\rho)$  je absorpční část tvrdší komponenty daná vztahem  $N_t(d\rho) = expB^{(2)} \cdot \exp(A^0d\rho)$ . Hodnoty veličiny  $\ln[N(d\rho) - N_B - N_t(d\rho)]$  jsou uvedeny v *Tab. 1* (chyba je dána přenosem relativních chyb dle [2]) a její závislost na  $d\rho$  vynesena do *Grafu 2*. Graf je proložen přímkou s rovnicí tvaru  $\ln[N(d\rho) - N_B - N_t(d\rho)] = B^{(1)} + A^{(1)} \cdot d\rho$ , kde  $B^{(1)} = \ln N^{(1)}(0)$  a  $A^{(1)} = -\frac{\mu\left(E_0^{(1)}\right)}{\rho}$  dle (1). Výsledek regrese:  $A^{(1)} = (-34 \pm 3)cm^2g^{-1}$ ,  $B^{(1)} = 4, 2 \pm 0, 3$ . Relativní chyba každého koeficientu je dána součtem relativní chyby regrese a maximální relativní chyby veličiny  $\ln[N(d\rho) - N_B - N_t(d\rho)]$ .

určíme metodou přenosu chyb dle [2]:  $E_0^{(1)} = (0.72 \pm 0.06) MeV.$ 



Maximální energie spekter  $E_0^{(1)}$  a  $E_0^{(2)}$  jsme určovali také z doletů emitovaných elektronů. Pro tvrdou část odhadujeme součin  $R_{\beta}\rho$  na  $R_{\beta}^{(2)}\rho = (1,0 \pm 0,1)gcm^{-2}$  a pro měkkou na  $R_{\beta}^{(1)}\rho = (0,16 \pm 0,05)gcm^{-2}$ . Energii  $E_0^{(2)}$  vypočteme ze vztahu (5) a chybu určíme metodou přenosu chyb dle [2]:  $E_0^{(2)} = (2,2 \pm 0,2) MeV$ . Energii  $E_0^{(1)}$  vypočteme ze vztahu (4) a chybu určíme stejným způsobem:  $E_0^{(1)} = (0,5 \pm 0,2) MeV$ .

Na závěr jsme do *Grafu 3* vykreslili absorpční křivky pro tvrdou i měkkou část. Absorpční křivka pro tvrdou část je dána závislostí  $N(d\rho) - N_B$  na  $d\rho$  a pro měkkou závislostí  $N(d\rho) - N_B - N_t(d\rho)$  na  $d\rho$ .



body jsem propojila ručně na papíře

# 4. Diskuse výsledků

Absorpční křivky jsme měřili tak, že jsme měřili závislost času potřebného k detekci 1000 částic na plošné hmotnosti  $d\rho$  absorbátorů. Relativní chyba tak pro každé jedno měření činila 3,2 %. Tuto chybu jsme snížovali opakovaným měřením času pro stejnou plošnou tloušťku. U větších hodnot  $d\rho$  jsme však prováděli pouze jedno měření, neboť by byl jinak experiment příliš časově náročný. Při větších časových možnostech bychom mohli veškerá měření provést vícekrát a tím chybu ještě snížit.

Celé měření mohlo být zatíženo chybou vzniklou tím, že plíšky použité jako absorbátor nebyly ideální. Nemusely být homogenní a vždy na sebe nepřiléhaly.

Určení energie z absorpčních koeficientů záviselo (kromě již popsaných chyb) na tom, které hodnoty byly do lineárních regresí použity (viz *Graf 1*). Roli hraje také odečtení pozadí, jehož chyba je velká, jelikož bylo proměřeno jen jedenkrát. Určení energie z doletů závisí na určení doletu, který jsme odhadli jen přibližně a s velkou chybou.

Tabelované maximální energie jsou dle [3]  $E_0^{(1)} = 0,546 \text{ MeV}$  a  $E_0^{(2)} = 2,28 \text{ MeV}$ . Tyto hodnoty se lépe shodují s energiemi určenými pomocí maximálních doletů.

### 5. Závěr

Měřením závislosti počtu detekovaných částic za jednotku času na plošné hmotnosti  $d\rho$  absorbátorů jsme určili absorpční koeficienty  $\mu$  pro tvrdou i měkkou složku absorpce a z nich spočetli maximální energie  $E_0 \beta$ -spektra:

Měkká část:  $E_0^{(1)} = (0,72 \pm 0,06) MeV$ 

Tvrdá část:  $E_0^{(2)} = (2,8 \pm 0,1) MeV$ 

Z naměřených závislostí jsme stanovili dolet emitovaných elektronů a maximální energie  $E_0$  určili také z něj:

Měkká část: 
$$E_0^{(1)} = (0,5 \pm 0,2) MeV$$

Tvrdá část:  $E_0^{(2)} = (2, 2 \pm 0, 2) MeV$ 

## 6. Seznam použité literatury

[1] Vorobel V.: Studium plynových detektorů,

http://physics.mff.cuni.cz/vyuka/zfp/\_media/zadani/texty/txt\_402.pdf (2013)

[2] J. Englich: Základy zpracování fyzikálních měření, Praha 2006

[3] Tables of Physical and Chemical Constants, http://www.kayelaby.npl.co.uk/atomic\_and\_nuclear\_physics/4\_6/4\_6\_3.html (2013)

20 bodů

# Příloha

| dρ                    | $t_1$   | $t_2$  | t <sub>3</sub> | $N_1(d\rho)$       | N <sub>2</sub> (dp) | N <sub>3</sub> (dp) | N(dp)            | ln(N-N <sub>B</sub> )  | ln(N-N <sub>B</sub> -N <sub>t</sub> ) |
|-----------------------|---------|--------|----------------|--------------------|---------------------|---------------------|------------------|------------------------|---------------------------------------|
| [mgcm <sup>-2</sup> ] | [s]     | [s]    | [s]            | [s-1]              | [s-1]               | [s-1]               | [s-1]            |                        |                                       |
| 0                     | 8,35    | 8,04   | 7,73           | $120 \pm 4$        | 124 ± 4             | 129 <u>+</u> 4      | 125 ± 2          | 4,82 ± 0,09            | ±0,2                                  |
| 9,9                   | 8,49    | 8,4    | 8,86           | $118 \pm 4$        | 119 ± 4             | 113 ± 4             | 117 <u>+</u> 2   | 4,75 <u>+</u> 0,09     | 3,9 ± 0,2                             |
| 20,2                  | 9,75    | 10,09  | 9,67           | $103 \pm 3$        | 99 <u>+</u> 3       | $103 \pm 3$         | $102 \pm 2$      | 4,61 ± 0,08            | 3,6 ± 0,1                             |
| 30,7                  | 11,51   | 12,27  | 11,49          | 87 <u>+</u> 3      | 81 <u>+</u> 3       | 87 ± 3              | $85 \pm 2$       | 4,44 ± 0,08            | 3,2 ± 0,1                             |
| 40,5                  | 12,87   | 13,17  | 12,52          | 78 ± 2             | 76 <u>+</u> 2       | $80 \pm 3$          | $78 \pm 1$       | 4,35 <u>+</u> 0,08     | 3,0 ± 0,1                             |
| 50,3                  | 14,29   | 15,01  | 14,12          | 70 ± 2             | 67 <u>+</u> 2       | $71 \pm 2$          | $69 \pm 1$       | 4,23 <u>+</u> 0,08     | 2,6 ± 0,1                             |
| 60,5                  | 16,59   | 16,55  | 16,14          | 60 <u>±</u> 2      | 60 <u>+</u> 2       | $62 \pm 2$          | $61 \pm 1$       | 4,10 ± 0,07            | 2,13 ± 0,09                           |
| 70,2                  | 17,9    | 18,45  | 18,2           | 56 <u>+</u> 2      | 54 <u>+</u> 2       | 55 ± 2              | 55 ± 1           | 3,99 <u>+</u> 0,07     | 1,65 ± 0,07                           |
| 79,9                  | 20,31   | 19,21  | 19,66          | 49 <u>+</u> 2      | 52 <u>+</u> 2       | 51 <u>+</u> 2       | 50,7 ± 0,9       | 3,91 <u>+</u> 0,07     | 1,24 ± 0,05                           |
| 89,6                  | 20,69   | 20,77  | 20,88          | 48 ± 2             | 48 <u>+</u> 2       | 48 ± 2              | 48,1 ± 0,9       | 3,86 <u>+</u> 0,07     | 1,18 ± 0,05                           |
| 100,2                 | 21,87   | 23,09  | 22,63          | 46 <u>±</u> 1      | 43 <u>±</u> 1       | $44 \pm 1$          | 44,4 ± 0,8       | 3,78 <u>+</u> 0,07     |                                       |
| 111,2                 | 25,15   | 24,92  | 24,35          | $40 \pm 1$         | $40 \pm 1$          | $41 \pm 1$          | 40,3 ± 0,7       | 3,68 <u>+</u> 0,07     |                                       |
| 122,5                 | 25,24   | 26,17  | 27,32          | $40 \pm 1$         | 38 ± 1              | 37 ± 1              | 38,1 ± 0,7       | 3,62 ± 0,07            |                                       |
| 133,8                 | 28,03   | 28,26  | 26,89          | 36 <u>+</u> 1      | 35 <u>+</u> 1       | $37 \pm 1$          | 36,1 ± 0,7       | 3,57 <u>+</u> 0,07     |                                       |
| 147,6                 | 31,48   | 29,91  | 29,4           | $32 \pm 1$         | 33 <u>+</u> 1       | $34 \pm 1$          | 33,1 ± 0,6       | 3,48 <u>+</u> 0,06     |                                       |
| 161,6                 | 31,8    | 33,19  | 32,45          | 31 ± 1             | $30 \pm 1$          | $31 \pm 1$          | 30,8 ± 0,6       | 3,40 <u>+</u> 0,06     |                                       |
| 254                   | 51,11   | 55,5   | 52,09          | 19,6 ± 0,6         | 18,0 <u>+</u> 0,6   | 19,2 ± 0,6          | 18,9 ± 0,3       | 2,90 <u>+</u> 0,05     |                                       |
| 358,4                 | 96,43   | 98,04  |                | 10,4 ± 0,3         | 10,2 ± 0,3          |                     | 10,3 ± 0,2       | 2,26 <u>+</u> 0,05     |                                       |
| 457,9                 | 164,37  | 162,88 |                | 6,1 <u>+</u> 0,2   | 6,1 <u>+</u> 0,2    |                     | 6,1 <u>+</u> 0,1 | 1,68 <u>+</u> 0,04     |                                       |
| 548,6                 | 257,69  |        |                | 3,9 <u>+</u> 0,1   |                     |                     | 3,9 <u>+</u> 0,1 | 1,15 <u>+</u> 0,04     |                                       |
| 651,2                 | 368,62  |        |                | 2,71 <u>+</u> 0,09 |                     |                     | 2,71 ± 0,09      | 0,68 <u>+</u> 0,02     |                                       |
| 758,6                 | 483,83  |        |                | 2,07 ± 0,07        |                     |                     | 2,07 ± 0,07      | 0,29 <u>+</u> 0,01     |                                       |
| 873,3                 | 524,49  |        |                | 1,91 <u>+</u> 0,06 |                     |                     | 1,91 ± 0,06      | 0,16 ± 0,01            |                                       |
| 954,4                 | 577,82  |        |                | 1,73 ± 0,05        |                     |                     | 1,73 ± 0,05      | 0,00101 ± 0,00003      |                                       |
| 1043,9                | 569,47  |        |                | 1,76 ± 0,06        |                     |                     | 1,76 ± 0,06      | 0,0260 <u>+</u> 0,0008 |                                       |
| 1095,4                | 605,59  |        |                | 1,65 ± 0,05        |                     |                     | 1,65 ± 0,05      | $-0,082 \pm 0,003$     |                                       |
| pozadí                | 1370,55 |        |                | $0,73 \pm 0,02$    |                     |                     | $0,73 \pm 0,02$  |                        |                                       |

Tab. 1: Naměřené hodnoty