UNIVERZITA KARLOVA

Základní fyzikální praktikum

Fyzikální praktikum IV. pro obor obecná fyzika

I. Objavovanie častíc v detektore ATLAS v CERN

Autor: Samuel Kočiščák

20. januára 2018

1 Pracovné úlohy

- 1. Spracujte približne 50 udalostí z detektoru ATLAS programom Hypatia.
- Pomocou programu ROOT zobrazte histogram invariantných hmotností pre rôzne veľké štatistické súbory.
- 3. Identifikujte výrazné peaky a priraďte ich očakávaným časticiam.
- Zistite chybu strednej hodnoty invariantnej hmotnosti pre nájdené častice pre rôzne veľké štatistické súbory.
- Vyneste zistené chyby do grafu ako funkciu počtu udalostí a porovnajte ich s Poissonovym rozdelením.

2 Teoretická časť

2.1 Rozpoznanie častíc

V LHC sa pri vysokých energiách zrážajú dvojice protónov s opačnou hybnosťou. Pri takejto zrážke môžu vznikať exotické častice s vysokou hmotnosťou, oveľa vyššou, než pokojová hmotnosť dvoch elektrónov. Ak vznikne častica s veľmi krátkou dobou života, nie je možnosť detekovať ju priamo, ale len skrz detekciu častíc, na ktoré sa rozpadne.

Detektor ATLAS pozostáva z niekoľkých vrstiev detektorov. Najbližšie k miestu zrážky je tzv. dráhový detektor, ktorý zaznamenáva polohu častíc, ktoré ním prelietajú, pričom s nimi príliš neinteraguje a teda im neodoberá významné množstvo energie. Dráhový detektor sa nachádza v homogénnom magnetickom poli, vďaka čomu vidno na zázname z neho odklon nabitých častíc.

Okolo dráhového detektora sa nachádza elektromagnetický kalorimeter, ktorý je schopný detekcie elektromagneticky interagujúcich častíc, najmä elektrónov (ktoré sú v ňom typicky zastavené) a fotónov. Elektromagnetický kalorimeter meria energiu častice v ňom zachytenej.

Hadrónový kalorimeter obklopuje elektromagnetický kalorimeter a zachytáva silno interagujúce častice zložené z kvarkov. Formát poskytnutej informácie je analogický informácii z elektromagnetického kalorimetra.

Miónové komory obklopujú v niekoľkých vrstvách hadrónový kalorimeter a aj keď nedokážu mióny zastaviť, dokážu určiť ich hybnosť oveľa presnejšie, než dráhový detektor. Podľa náboja častice a toho, ktorou vrstvou (ak nejakou) bola zastavená možno určiť, o akú časticu sa jednalo a akú mala energiu.

2.2 Z bozóny a Higgsove bozóny

Ako Z bozóny, tak Higgsove bozóny sú krátko žijúce neutrálne ťažké častice. Z prírodných zákonov vyplývajú obmedzenia na to, na aké častice sa môžu tieto bozóny rozpadať. Spomedzi všetkých sú dostatočne početnými a dobre detekovateľnými rozpady $Z^0 \rightarrow e^+ + e^-, Z^0 \rightarrow \mu^+ + \mu^-, H^0 \rightarrow 2Z^0 \rightarrow 2l^+ + 2l^-, H^0 \rightarrow 2\gamma$. Budeme

sa teda snažiť identifikovať dvojice $e^++e^-,\,\mu^++\mu^-$ a 2γ a z ich invariantných hmotností určovať, z akých častíc pochádzajú.

2.3 Invariantná hmotnosť

Zo špeciálnej teórie relativity vieme, že pokojová hmotnosť m_0 častice je invariantom. Možno ju určiť ako

$$m_0 = \sqrt{\left(\frac{E}{c^2}\right)^2 - \left(\frac{|\vec{p}|}{c^2}\right)^2},\tag{1}$$

čo platí pre dvojicu častíc pochádzajúcich z rozpadu inej v tvare

$$m_0 = \sqrt{\left(\frac{E_1 + E_2}{c^2}\right)^2 - \left(\frac{|\vec{p_1} + \vec{p_2}|}{c^2}\right)^2},$$
(2)

kde m_0 je v našom prípade pokojová hmotnosť materskej častice. Energie a hybnosti častíc zmeria a výpočet prevedie detektor ATLAS, naša úloha sa teda redukuje na identifikáciu dvojice častíc z jedného rozpadu.

Nasleduje tabuľka pokojových hmotností m_0 pre niektoré vybrané častice.

castica	$m_0 \left[GeV/c^2 \right]$	rozpadova sirka $[GeV/C^2]$
J/ψ	3,1	$9 \cdot 10^{-5}$
$\Upsilon(1S)$	9,5	$5 \cdot 10^{-5}$
Z	91,2	2,5
Н	125,1	< 0,013
Z'	$>> m_0(Z)$??

Tabuľka 1: Pokojové hmotnosti niektorých vybraných bozónov

2.4 Chyba a Poissonovo rozdelenie

Podľa teórie^[St] zo štatistiky predpokladáme, že chyba určenia jednotlivých veličín fitovaním bude klesať ako prevrátená hodnota odmocniny — podľa Poissonovho rozdelenia. Predpokladáme teda závislosť

$$\sigma(n) = A/\sqrt{n},\tag{3}$$

kde A je konštanta rozmeru chyby σ .

3 Výsledky merania

3.1 Ručné spracovanie

Spracovali sme dátové súbory 0,1 a časť súboru 2, spolu sme ručne analyzovali 125 zdrážok. V programe Hypatia sme nastavili pobmedzenia na minimálnu hybnosť častice, aby sme pri väčšine rozpadov videli len zopár častíč. Keďže častice z rozpadu niektorého z ťažkých bozónov majú vysokú energiu, jedná sa typicky o najenergetickejšiu dvojicu častíc v udalosti.

Pozreli sme si záznam každej zrážky a určovali sme dvojice $e^+ + e^-$, $l^+ + l^-$ a $\gamma + \gamma$ tak, že sme do dvojice zahrnuli dve najenergetickejšie vyhovujúce čatice. Aby boli vyhovojúce, museli byť jedného typu a pochádzať z jedného miesta – z toho istého rozpadu. Aj keď sme to a priori nepožadovali, pozorovali sme, že častice z páru, minimálne ak sa v zrážke vyskytlol práve jeden vysokoenergetický pár, mali približne opačný smer. To dáva zmysel, keďže častice odnesú veľa energie, nemôže sa ich hybnosť sčítať, pretože v rozpade by už neostalo dosť energie, aby ostatné častice vykompenzovali hybnosť totho páru.

Po označení dvojice častíc program Hypatia dopočítal pokojovú hmotnosť materskej častice. Ak sa v zrážke vyskytli dva leptón-antileptónové páry, systém vypočítal aj pokojovú hmotnosť častice, z ktorej mohli vzísť dva Z bozóny rozpaduvšie na zmienené dva leptón-antileptónové páry. Po spracovaní určeného množstva dátových súborov sme sa zaoberali už len štatistikou pokojových hmotností kandidátov na niektorý z bozónov z tabuľky 1.

3.2 Pokojové hmotnosti materskej častice – naše spracovanie

Graf na obrázku 1 je histogramom invariantných hmotností za predpokladu, že nami identifikované dvojice častíc pochádzajú z dvojčasticového rozpadu jedenj častice.

Obr. 1: Histogram invariantných hmotností matersekj častice - fit na Z bozón

Až na zopár rozpadov v okolí $1500~{\rm GeV/c^2}$ zodpovedajú všetky hmotnostiam materskej častice okolo $100~{\rm GeV/c^2}$. Tento región je priblížený v grafe na obrázku 2.

Obr. 2: Histogram invariantných hmotností matersekj častice - fit na Z bozón

V grafe na obr. 2 vidno výrazný peak hmotnosťou zodpovedajúci Z bozónu (91,2(25) GeV/c² podľa tabuľky, 91(3) GeV/c² nafitované). Objavuje sa aj náznak peaku v okolí 120 GeV/c², ktorý by mohol zodpovedať Higgsovmu bozónu, no pri tomto pohľade je to skutočne nepriekazné. Kvôli hrubému binningu a malému počtu udalostí nevidno žiadne peaky, ktoré by sme mohli stotožniť s J/ψ alebo Υ .

Aby sme mohli lepšie študovať nevýrazný pe
ak Higgsovho bozónu, vyfiltrujme iba $\gamma+\gamma$ udalosti. Tieto priblížené na oblasť okol
o $120\,{\rm GeV/c^2}$ vidno v histograme na obrázku 3.

Obr. 3: Histogram invariantných hmotností matersekj častice z fotónových rozpadov - fit na H bozón

V histograme na obrázku 3 už vindo, jasný peak na správnom mieste (125,1 GeV/c^2 podľa tabuľky, 120(20) GeV/c^2 nafitované).

3.3 Ďalšie dáta

V tejto sekcii budeme interpretovať väčšie množstvo dát, ktoré sme dostali už spracované. Ide o rovnaké dáta, ako sme spracovávali v stati 3.2, ale k našim 129 rozpadom sme pre lepšiu štatistiku pridali 1241 cudzích. Obdobou nášho grafu 1 je graf 4.

Obr. 4: Histogram invariantných hmotností matersekj častice - fit na Z bozón

Aj v histograme na obrázku 4 vidno veľmi výrazný peak okolo $100~{\rm GeV/c^2}$ (graf v logaritmickej mierke). Okrem toho pozorujeme peak na nízkých energiách (tomu sa ešte budeme venovať), peak okolo $1500~{\rm GeV/c^2}$ a náznak niečoho ako peak okolo $1000~{\rm GeV/c^2}$. Tieto dva peaky pravdepodobne zodpovedajú dvom ťažkým časticiam, ktoré sme nepredpokladali. Nevieme o nich povedať veľa, iba toľko, že niektorá z nich môže byť napríklad nepotvrdený Z' bozón.

V histogramoch na obrázkoch 5 a 6 pozorujeme, že rozloženie dvojleptónových udalostí je podobné rozdeleniu všetkých častíc, najmä preto, že dvojleptónové udalosti sú najpočetnejšie. Vidno však nižší počet udalostí v okolí $1500 \, {\rm GeV/c^2}.$

Obr. 5: Histogram invariantných hmotností matersekj častice - elektrón pozitronové udalosti

Obr. 6: Histogram invariantných hmotností matersekj častice - mión antiniónové udalosti

V histograme na obrázku 7 vidno rozdelenie pokojových hmotností pre dvojfotónové udalosti. Po odstránení leptónových udalostí jasne zmizol peak na nízkych energiách a peak okolo $1000~{\rm GeV/c^2}$. Vymizol taktiež peak v okolí $90~{\rm GeV/c^2}$.

Obr. 7: Histogram invariantných hmotností matersekj častice - dvojfotónové udalosti

Z histogramov na obrázkoch 5, 6 a 7 možno teda robiť závery, že častice v okolí $<\!10~{\rm GeV/c^2}~(J/\psi$ a $\Upsilon)$ a $90~{\rm GeV/c^2}$ (Z bozóny) sa rozpadávajú dvojleptónovo, častice okolo $120~{\rm GeV/c^2}$ (H bozóny) sa rozpadávajú fotónovo, neidentifikované častice okolo $1000~{\rm GeV/c^2}$ sa rozpadávajú leptónovo a neidentifikované častice okolo $1500~{\rm GeV/c^2}$ sa rozpadávajú fotónovo.

3.4 Konvergencia rozdelenia a chyby

Na obrázkoch 8 až 11 vidno vývoj polohy a chyby určenia polohy prislúchajúcich peakov.

Obr. 8: Vývoj histogramu pekuZbozónu so zvyšujúcim sa počtom preskúmaných udalostí

Obr. 9: Vývoj histogramu pekuHbozónu so zvyšujúcim sa počtom preskúmaných udalostí

Samuel Kočiščák

Obr. 10: Vývoj histogramu peku J/ψ bozónu so zvyšujúcim sa počtom preskúmaných udalostí

Obr. 11: Vývoj histogramu peku Υ bozónu so zvyšujúcim sa počtom preskúmaných udalostí

Samuel Kočiščák

Vo všetkých 4 obrázkoch 8 až 11 je jasná tendencia konvergencie stredu peaku, znižujúcej sa chyby polohy a konvergencie šírky peaku. Nasledujú grafy závislostí chyby stredu a chyby šírky pre jednotlivé častice.

Obr. 12: Graf chyby polohy stredu a chyby šírky pre ${\cal Z}$ bozón

Obr. 13: Graf chyby polohy stredu a chyby šírky pre ${\cal H}$ bozón

Obr. 14: Graf chyby polohy stredu a chyby šírky pre J/ψ bozón

Obr. 15: Graf chyby polohy stredu a chyby šírky pre Υ bozón

Všetky z grafov na obrázkoch 12 až 15 sú fitované fukciou predpisu 3. V tabuľke 2 sú zapísané jednotlivé nafitované hodnoty parametra A.

častica	veličina	$A GeV/c^2$	neurčitosť $A~GeV/c^2$
Z	chyba stredu	5,7	0,3
Z	chyba šírky	6,0	0,8
Н	chyba stredu	210	50
Н	chyba šírky	4100	2400
J/ψ	chyba stredu	150	50
J/ψ	chyba šírky	630	340
$\Upsilon(1S)$	chyba stredu	20	5
$\Upsilon(1S)$	chyba šírky	90	30

Tabuľka 2: Pokojové hmotnosti niektorých vybraných bozónov

Niektoré z grafov na obrázkoch 12 až 15 sú v súlade s teóriou — fit dobre sedí. To je prípad obrázka 12 a povedzme, že aj 15. Niektoré nesedia vôbec. Keďže najlepšiu štatistickú vzorku máme pravé pre Z pozón, prikloníme sa k výsledku v obrázku 12 a povieme, že chyba skutočne klesá približne ako prevrátená hodnota odmocniny.

4 Diskusia výsledkov

Vysokú chybu (rozmazaný peak) v histograme na obrázku 3 možno prisúdiť zlému rozlíšeniu detektora. Keďže sa jedná o $\gamma + \gamma$ rozpad, informáciu o smere (a teda hybnosti) fotónov máme v podstate len z elektromagnetického kalorimetra, v kontraste s presnejšou informáciou z dráhového detektora, ktorú máme pre leptóny.

Nie vo všetkých grafoch na obrázkoch 8 až 11 sadol fit pekne, dôvodom je hlavne malá štatistická vzorka a pomerne vysoké pozadie. To možno opraviť psracovaním väčšieho množstva dát a vylepšením (sprísnením) algoritmu na určovanie leptónových a fotónových párov.

Pozorovali sme veľmi málo štvorčasticových rozpadov na to, aby sme mohli urobiť nejakú rozumnú štatistiku $H \rightarrow Z + Z$ rozpadov. Opäť, toto možno napraviť spracovaním výrazne väčšieho počtu udalostí.

5 Záver

Spracovali sme 125 zrážok a získali sme údaje o 129 rozpadoch.

Zobrazili sme histogramy pokojových hmotností materských častíca diskutovali sme pozorované peaky a priradzovali sme im najpravdepodobnejšie zdroje (materské častice).

Pozorovali sem vývoj chyby určenia stredu a šírky peakov zodpovedajúcich jednotlivým materským časticiam a konštatujeme, že chyby skutočne klesajú so zvyšujúcim sa počtom udalostí ako prevrátená hodnota odmocniny počtu sledovaných udalostí.

6 Zoznam použitej literatúry

- [St] Kolektív ZFP KVOF MFF UK. Študijný text k meraniu: Objevování částic v detektoru ATLAS v CERN. [cit. 2017-12-08]. URL: <http://physics.mff.cuni.cz/vyuka/zfp/ _media/zadani/texty/txt_401.pdf>.
- [Wi] Kolektív WIKIMEDIA project. Wikipedia: Rydberg Constant [cit. 2017-12-05]. URL: <https://en.wikipedia.org/wiki/ Rydberg_constant>.