# 1 Pracovní úkoly

- 1. Najděte směr snadného průchodu polarizátoru užívaného v aparatuře.
- 2. Ověřte, že zdroj světla je polarizován kolmo k vodorovné rovině.
- Na přiložených vzorcích proměřte závislost intenzity odraženého světla na úhlu dopadu pro TE i TM polarizaci.
- 4. Naměřené výsledky porovnejte s teoretickým průběhem závislostí.
- 5. Určete indexy lomů měřených vzorků a jejich relativní chybu.

# 2 Teoretický úvod

#### 2.1 Fresnelovy vzorce

Fresnelovy vzorce (A. J. Fresnel 1821) popisují intenzitu světla po dopadu na rozhraní dvou prostředí, tedy jak intenzitu odražené, tak prošlé složky. Pro tento popis jsou zavedeny dva základní pojmy - odrazivost R a propustnost T. Obě veličiny mohou nabývat hodnot v rozmezí 0 - 1 a jsou navzájem spojeny vztahem

$$T = 1 - R,\tag{1}$$

z něhož je patrné, že součtem T a R dostaneme vždy 1, tedy obě veličiny po přenásobení 100 dávají v procentech hodnotu zkoumané intenzity. Hodnota odrazivosti je dána vztahem

$$R = |r|^2,\tag{2}$$

kde r je koeficient odrazivosti. [1]

Odrazivost R i propustnost T jsou silně závislé na polarizaci světla dopadajícího na rozhraní. V principu existují dva speciální případy polarizace dopadajícího paprsku - TE (neboli *s-polarizace*) a TM (neboli *p-polarizace*). Při *s-polarizaci* je elektrická složka dopadajícího světla  $\vec{E}$  kolmá na rovinu dopadu. Naopak při *p-polarizaci* je  $\vec{E}$  rovnoběžná s rovinou dopadu. Z důvodu závislosti intenzity na polarizaci paprsku tedy rozlišujeme odrazivosti  $R_s$  a  $R_p$ , propustnosti  $T_s$  a  $T_p$  a koeficienty odrazivosti  $r_s$  a  $r_p$  a koeficienty propustnosti  $t_s$  a  $t_p$ , vše značené v souladu s označením typů polarizace výše. [1]

S TM, neboli *p-polarizací* je spojen pojem tzv. Brewsterova úhlu  $\theta_B$ , definovaného vztahem

$$\tan \theta_B = \frac{N_2}{N_1},\tag{3}$$

kde vystupují indexy lomů prostředí ze kterého se paprsek šíří  $N_1$  a prostředí, do kterého se paprsek šíří  $N_2$ . Brewsterův úhle je významným, protože při jeho dosažení, jakožto úhlu dopadu na rozhraní dvou prostředí, je koeficient odrazivosti pro *p-polarizaci*  $r_p$  roven nule. Tedy dochází k polarizaci dopadajícího světla - odražený paprsek má  $\vec{E}$  zcela polarizovaný kolmo na rovinu dopadu a procházející paprsek má  $\vec{E}$  většinově polarizovaný v rovině dopadu. [3]

Jako Fresnelovy vzorce jsou označovány tvary koeficientů odrazivosti a koeficientů propustnosti, často zapisovány s pomocí indexů lomu  $N_1$  a  $N_2$  obou prostředí, tedy ve tvaru

$$r_s = \frac{N_1 \cos \gamma_1 - N_2 \cos \gamma_2}{N_1 \cos \gamma_1 + N_2 \cos \gamma_2},\tag{4}$$

$$t_s = 1 + r_s,\tag{5}$$

$$r_p = \frac{N_2 \cos \gamma_1 - N_1 \cos \gamma_2}{N_2 \cos \gamma_1 + N_1 \cos \gamma_2},\tag{6}$$

$$t_p = \frac{N_1}{N_2} (1 + r_p), \tag{7}$$

kde vystupuje úhle dopadu  $\gamma_1$  a úhel  $\gamma_2$  pod kterým odchází lomený paprsek. [1]

Pro odvození Fresnelových vzorců je nezbytné znát tz. Snellův zákon, jehož podoba je

$$N_1 \sin \alpha_1 = N_2 \sin \alpha_2,\tag{8}$$

kde vystupují indexy lomu obou prostředí  $N_1$ ,  $N_2$  a úhly  $\alpha_1$ ,  $\alpha_2$ , tedy úhel dopadu a úhel, pod kterým odchází lomený paprsek druhým prostředím. [3]

#### 2.2 Měřící aparatura

Měření probíhalo na aparatuře složené z goniometru (HZG3), zdroje laserového svazku a měřící diody (schéma aparatury viz Fig 1). Ve středu goniometru byl umístěn vzorek a na vnějším disku goniometru byla připevněna měřící dioda. Díky tomuto uspořádání docházelo při otáčení goniometru k přesně definované změně pozici diody vůči vzorku a sice tak, že pokud byl vzorek vůči laserovému svazku natočen o úhel  $\alpha$ , pak byla dioda natočena o úhel  $2\alpha$ . Dioda byla napojena na voltmetr a zjištěné napětí  $U_{\alpha}$  bylo na odrazivost  $R_{s,p}$  přepočteno pomocí vztahu

$$R_{s,p} = \frac{U_{\alpha}}{U_0},\tag{9}$$

kde  $U_0$  je napětí zjištěné při tzv. klouzavém dopadu, tedy při situaci kdy  $\alpha$  je velice blízké nule. [2]



Figure 1: Schéma aparatury použité při experimentu. Převzato z [2].

Přesnost nastavení úhlu  $\alpha$  pomocí goniometru činila  $\pm 0,002^{\circ}$ . Úhel natočení vzorku  $\alpha$  a úhle dopadu svazku na vzorek  $\gamma$  byly svázány vztahem vycházejícím z geometrie experimentu, tedy

$$\gamma = 90^{\circ} - \alpha. \tag{10}$$

Použitý laserový svazek byl polarizován v rovině kolmé na vodorovnou rovinu. Mezi zdroj laserového svazku a vzorek byly postupně vloženy až tři prvky - polarizátor a dvě čtvrtvlnnné destičky. Experiment probíhal na dvou vzorcích skla. Jako *Vzorek č. 1* bylo označeno velké sklo se zadaným indexem lomu 1,509. Jako *Vzorek č. 2* pak sklo s označením SFL6 a udaným indexem lomu 1,8051.

## 3 Výsledky měření

#### 3.1 Polarizátor a polarizace zdroje

Na počátku měření bylo nutné nalézt rovinu snadného průchodu polarizátoru. Přes polarizátor bylo pohlíženo na odraz žárovky stolní lampy na skleněné destičce, přičemž byl nejprve nalezen Brewstův úhel a měření probíhala při poloze polarizátoru zhruba v tomto úhlu, aby pozorovaný efekt ztmavení obrazu byl maximální. Ze zjištěných hodnot (viz tabulka č.1) byl výsledný úhel určen aritmetickým průměrem a jeho chyba jako odmocnina ze součtu kvadrátů nepřesnosti nastavení polarizátoru ( $\pm 2^{\circ}$ ) a směrodatné odchylky změřených hodnot. Tímto postupem byl určen směr minimální propustnosti, který je o 90° pootočen oproti směru snadného průchodu.

| Měření | Úhel při minimální intenzitě [°] |
|--------|----------------------------------|
| 1      | 72                               |
| 2      | 254                              |
| 3      | 70                               |
| 4      | 74                               |
| 5      | 250                              |

Tabulka 1: Hodnoty úhlu natočení polarizátoru při průchodu minimální intenzity světla zjišťované okem. Přesnost nastavení polarizátoru byla  $\pm 2^{\circ}$ .

| Metoda měření              | Úhel natočení roviny snadného průchodu [°] |
|----------------------------|--------------------------------------------|
| Pohledem                   | $162.8 \pm 3.3$                            |
| Laserovým svazkem a diodou | $160 \pm 2$                                |

Tabulka 2: Úhel sklonu roviny snadného průchodu použitého polarizátoru zjištěný jednak pomocí pohledové metody, jednak pomocí polarizovaného laserového svazku.

Následně byla ověřena polarizace zdroje laserového paprsku. Před zdroj byl umístěn polarizátor, který byl následně natáčen tak, aby na voltmetru připojeném na detekční diodu byla naměřena co nejnižší hodnota napětí. Tímto mechanismem byl opět určen nepropustný směr polarizátoru (při znalosti polarizace zdroje), respektive ověřena polarizace zdroje (při znalosti roviny snadného průchodu polarizátorem). Výsledky měření touto metodou i výsledný úhle spočtený z měření pohledem jsou zaneseny v tabulce č.2.

#### 3.2 Měření intenzity odraženého světla

Měření probíhalo na aparatuře popsané v kapitole 2.2 *Měřící aparatura*, byla tedy měřena hodnota napětí při různém natočení vzorku a z ní byla dle (9) spočtena odrazivost. Nejprve byla pro oba vzorky proměřena *s-polarizace*, poté *p-polarizace*.

Pro první sadu měření, tedy sadu měření při *s-polarizaci*, byl před zdroje laserového paprsku umístěn pouze polarizátor a to ve směru snadného průchodu kolmém na vodorovnou osu tzn. shodně s polarizací laserového paprsku. Před upnutím prvního vzorku byla naměřena hodnota  $U_0$  maximálního napětí na měřící diodě. Následně byl upnut vzorek 1, seřízena jeho poloha tak, aby stopa odrazu na detekční diodě byla ve správné poloze, a proměřen v rozsahu zhruba 80° s krokem po 5°. Následně bylo to samé provedeno se vzorkem č.2.

Před druhou sadou měření (*p-polarizace*) byly mezi zdroj a polarizátor umístěny dvě čtvrtvlnné destičky. Jedna měla definovanou polohu, druhou bylo nutno nastavit. Nastavení proběhlo tak, že polarizátor byl otočen o 90° tak, aby směr snadného průchodu byl rovnoběžný s vodorovným směrem a následně bylo čtvrtvlnnou destičkou otáčeno, dokud nebylo nalezeno minimum intenzity detekované světla, respektive minimální napětí na diodě. Poté byla tato destička otočena o 90°, čímž bylo dosaženo požadovaného nastavení. Měření poté probíhala stejně jako pro první sadu měření. Na závěr měření každého vzorku bylo ještě detailně (s krokem 1°) proměřeno okolí (rozumněno ± 5°) Brewsterova úhlu, který byl přibližně určen s již zjištěných dat a jeho přesná hodnota byla určena opakovaným hledáním minimálního měřeného napětí - viz tabulka č.5. Výsledná hodnota  $\alpha$  byla určena jako aritmetický průměr a její chyba jako směrodatná odchylka změřených hodnot. Hodnota Brewsterova úhlu  $\theta_B$  je pak s úhlem  $\alpha$  spojena vztahem (10) při dosazení  $\theta_B$  za  $\gamma$  a chyba vzata totožná. Zjištění hodnota Brewsterova úhlu opět viz tabulka č.5.

Hodnoty naměřené v první sadě měření, tedy při *s-polarizaci* byly zaneseny do tabulky č.3. Data z druhé sady měření (*p-polarizace*) jsou obsažena v tabulce č.4 a údaje získané detailním proměřením okolí Brewstova úhlu jsou zaneseny v tabulce č.6. Zjištěné hodnoty odrazivosti R pro obě polarizace a

oba vzorky jsou spolu s teoretickou závislostí vycházející z (2) a (6), respektive (4) vyneseny v grafu Fig 2. Průběh R v blízkém okolí Brewsterova úhlu pro oba vzorky, samozřejmě při p-polarizaci, je vynesen spolu s teoretickou závislostí na grafu Fig 3.

Po zpracování všech dat bylo přistoupeno k hledání indexu lomu měřených vzorků. Index lomu je vzhledem k experimentu možné určit dvěma různými způsoby - z Brewsterova úhlu a fitem získané závislosti odrazivosti na úhlu dopadu, tedy za pomocí vztahů (2), (6), (4) a (8). Při výpočtu z Brewstova úhlu, tedy vztahu (3), byla relativní chyba určení indexu lomu vzata stejná jako relativní chyba určení Brewsterova úhlu. Při lineárním fitu byla jako chyba určení indexu lomu vzata chyba fitu (fitování probíhalo pomocí programu GNUPLOT). Všechny zjištěné hodnoty indexu lomu jsou zaneseny v tabulce č.7.

### 4 Diskuze

Všechna měření provedená pomocí goniometru vykazují vysokou teoretickou přesnost. Ovšem při pohledu na graf Fig 2 je jasně patrné, že v případě *s-polarizace* se změřená data liší od teoretické závislosti řádově více, než je chyba daná měřícími přístroje. V případě *p-polarizace* je shoda mezi změřenými daty a teoretickou závislostí značně vyšší, ovšem i zde je velký počet bodů, které se liší o mnohem více, než pouze chybu danou měřícími přístroji. Navíc vzorek č.1 vykazuje vyšší odrazivost při *s-polarizaci*, než jaká je teoretická, ovšem vzorek č.2 naopak při stejné polarizaci zdroje vykazuje podstatně nižší odrazivost, než jakou by vykazovat dle teorie měl. Toto poslední zjištění vede k domněnce, že měření nebylo zatíženo systematickou chybou, ale náhodnou.

Určení Brewsterova úhlu je zatíženo pouze relativně malou teoretickou chybou. Ovšem při srovnání proměření odrazivosti v okolí Brewsterova úhlu s teoreticky předpovězenými hodnotami (viz Fig 3) je dobře patrné, že skutečná hodnota Brewsterova úhlu je až o  $6^{\circ}$  jiná.

Při určování indexu lomu vzorků bylo různými metodami dosaženo značně odlišných hodnot - viz tabulka č.7. Jak již bylo diskutováno výše - všechna změřená data odrazivosti trpí značnou chybou, což vysvětluje, proč při použití různých metod pro určení indexu lomu, bylo dosaženo tak odlišných výsledků, které se liší od reálného indexu lomu vzorků (viz kapitola 2.2 *Měřící aparatura*). Nicméně je zajímavé si povšimnout, že samotná chyba fitu funkce závislé na hledaném indexu lomu trpí jen velmi malou chybou. Zjištěná závislost odrazivosti R na úhlu dopadu tedy vykazuje poměrně přesně tvar předpovězený teorií, ovšem pro jiný index lomu.

Ze zjištěných fakt tedy vše vypadá tak, jako by se v průběhu mezi jednotlivými měřeními měnil index lomu vzorků. Tento efekt mohl vzniknout hned několika mechanismy. Jednak vzorek nebyl pro měření obou polarizací upnut do naprosto přesně stejného místa ve smyslu, že stopa laserového svazku nedopadala na přesně stejné místo. Tedy pokud by při jednom s měření dopadala světelná stopa na místo vzorku, které bylo mechanicky poškozeno, například drobným škrábancem, část světla by se od vzorku do detektoru vůbec neodrazila. Druhým faktorem, který mohl hrát roli, bylo zašpinění vzorku. Mastnota, či prach na vzorku by jistě ovlivnili jeho odrazivost.

## 5 Závěr

Cílem experimentu bylo proměřit závislost odrazivosti R na úhlu dopadu  $\gamma$  laserového svazku na dva vzorky skla. Měření probíhala jak pro *s-polarizaci*, tak pro *p-polarizaci* zdroje. Dosažené výsledky při měření s *s-polarizaci* se značně liší od teoretických hodnot, ovšem měření při *p-polarizaci zdroje* se poměrně dobře shoduje s teorií - viz graf Fig 2 a Fig 3. Kromě odrazivosti byla zjišťována také hodnota Brewsterova úhlu, která byla ovšem také určena poměrně dosti nepřesně.

Protože provedená měření se s teorií neshodovala příliš dobře, tak i výpočet indexu lomu měřených vzorků (viz tabulka č.7) dal hodnoty značně odlišné od těch, které byly udány na vzorcích.

| $U_{0s}=1845\pm10$       |                  |                |                       |                     |                          |                   |                             |
|--------------------------|------------------|----------------|-----------------------|---------------------|--------------------------|-------------------|-----------------------------|
| Vzorek č.1, s-polarizace |                  |                |                       |                     |                          |                   |                             |
| Měření                   | $lpha_1[^\circ]$ | $U_{lpha_1}$   | $\delta U_{lpha_1}$   | $\gamma_1[^\circ]$  | $\delta\gamma_1[^\circ]$ | $R_{1s}[10^{-2}]$ | $\delta R_{1s} \ [10^{-2}]$ |
| 1                        | 2,44             | 1685           | 10                    | 87,56               | 0,02                     | 91,33             | 0,73                        |
| 2                        | 7,5              | 1281           | 10                    | 82,5                | 0,02                     | 69,43             | 0,66                        |
| 3                        | 12,5             | 985            | 10                    | 77,5                | 0,02                     | $53,\!39$         | 0,61                        |
| 4                        | 17,5             | 752            | 10                    | 72,5                | 0,02                     | 40,76             | $0,\!59$                    |
| 5                        | 22,5             | 536            | 5                     | 67,5                | 0,02                     | 29,05             | 0,31                        |
| 6                        | 27,5             | 410            | 5                     | 62,5                | 0,02                     | 22,22             | 0,30                        |
| 7                        | 32,5             | 319            | 5                     | 57,5                | 0,02                     | 17,29             | 0,29                        |
| 8                        | 37,5             | 254            | 2                     | 52,5                | 0,02                     | 13,77             | 0,13                        |
| 9                        | 42,5             | 209            | 2                     | 47,5                | 0,02                     | 11,33             | 0,12                        |
| 10                       | 47,5             | 179            | 2                     | 42,5                | 0,02                     | 9,70              | 0,12                        |
| 11                       | 52,5             | 150            | 2                     | 37,5                | 0,02                     | 8,13              | 0,12                        |
| 12                       | 57,5             | 123            | 1                     | 32,5                | 0,02                     | $6,\!67$          | 0,07                        |
| 13                       | 62,5             | 108            | 1                     | 27,5                | 0,02                     | $5,\!85$          | 0,06                        |
| 14                       | 67,5             | 96             | 1                     | 22,5                | 0,02                     | $5,\!20$          | 0,06                        |
| 15                       | 72,5             | 89             | 1                     | 17,5                | $0,\!02$                 | 4,82              | 0,06                        |
| 16                       | 77,5             | 82             | 1                     | 12,5                | $0,\!02$                 | 4,44              | 0,06                        |
| 17                       | 80               | 81             | 1                     | 10                  | 0,02                     | $4,\!39$          | 0,06                        |
|                          |                  |                | Vzorek                | č.2, s-p            | olarizac                 | e                 |                             |
| Měření                   | $lpha_2[^\circ]$ | $U_{\alpha_2}$ | $\delta U_{lpha_1 2}$ | $\gamma_2 [^\circ]$ | $\delta\gamma_2[^\circ]$ | $R_{2s}[10^{-2}]$ | $\delta R_{2s} \ [10^{-2}]$ |
| 1                        | $^{4,6}$         | 1405           | 5                     | 85,4                | 0,02                     | $76,\!15$         | $0,\!49$                    |
| 2                        | $_{9,6}$         | 981            | 5                     | 80,4                | 0,02                     | $53,\!17$         | 0,40                        |
| 3                        | $14,\! 6$        | 705            | 5                     | 75,4                | 0,02                     | 38,21             | $0,\!34$                    |
| 4                        | $19,\! 6$        | 500            | 2                     | 70,4                | $0,\!02$                 | 27,10             | 0,18                        |
| 5                        | $24,\!6$         | 377            | 2                     | 65,4                | 0,02                     | $20,\!43$         | $0,\!15$                    |
| 6                        | $29,\!6$         | 295            | 1                     | 60,4                | 0,02                     | $15,\!99$         | 0,10                        |
| 7                        | $34,\!6$         | 247            | 1                     | 55,4                | 0,02                     | $13,\!39$         | 0,09                        |
| 8                        | $39,\!6$         | 207            | 1                     | 50,4                | $0,\!02$                 | $11,\!22$         | 0,08                        |
| 9                        | 44,6             | 175            | 1                     | 45,4                | 0,02                     | $9,\!49$          | 0,07                        |
| 10                       | 49,6             | 150            | 1                     | 40,4                | 0,02                     | 8,13              | 0,07                        |
| 11                       | 54,6             | 132            | 1                     | 35,4                | 0,02                     | 7,15              | 0,07                        |
| 12                       | 59,6             | 116            | 1                     | 30,4                | 0,02                     | 6,29              | 0,06                        |
| 13                       | 64,6             | 101            | 1                     | 25,4                | 0,02                     | $5,\!47$          | 0,06                        |
| 14                       | 69,6             | 97             | 1                     | 20,4                | 0,02                     | 5,26              | 0,06                        |
| 15                       | 74,6             | 72             | 1                     | 15,4                | 0,02                     | $3,\!90$          | 0,06                        |
| 16                       | 79,6             | 96             | 1                     | 10,4                | 0,02                     | 5,20              | 0,06                        |

Tabulka 3: Měření při *s-polarizaci* zdroje. Naměřené hodnoty napětí v závislost na úhlu otočení vzorku  $\alpha$  vzhledem ke zdroji laserového paprsku (levá část tabulky). V pravé části tabulky jsou vypočtené hodnoty úhlu dopadu  $\gamma$  laserového svazku na vzorek a hodnoty odrazivosti  $R_s$  a to vše pro dva vzorky. V záhlaví tabulky je uvedena maximální hodnota napětí naměřená bez vzorku.

| $U_{0p}=1853\pm 5$       |                  |                |                       |                    |                          |                   |                             |
|--------------------------|------------------|----------------|-----------------------|--------------------|--------------------------|-------------------|-----------------------------|
| Vzorek č.1, p-polarizace |                  |                |                       |                    |                          |                   |                             |
| Měření                   | $lpha_1[^\circ]$ | $U_{lpha_1}$   | $\delta U_{lpha_1}$   | $\gamma_1[^\circ]$ | $\delta\gamma_1[^\circ]$ | $R_{1p}[10^{-2}]$ | $\delta R_{1p} \ [10^{-2}]$ |
| 1                        | 4,5              | 1034           | 3                     | 85,5               | 0,02                     | $55,\!80$         | 0,22                        |
| 2                        | 9,5              | 506            | 3                     | 80,5               | 0,02                     | 27,31             | 0,18                        |
| 3                        | 14,5             | 234            | 2                     | 75,5               | 0,02                     | 12,63             | 0,11                        |
| 4                        | 19,5             | 102            | 2                     | 70,5               | 0,02                     | 5,50              | 0,11                        |
| 5                        | 24,5             | 36             | 2                     | 65,5               | 0,02                     | 1,94              | 0,11                        |
| 6                        | 29,5             | 10             | 1                     | 60,5               | 0,02                     | 0,54              | 0,05                        |
| 7                        | 34,5             | 5              | 1                     | 55,5               | 0,02                     | 0,27              | 0,05                        |
| 8                        | 39,5             | 6              | 1                     | 50,5               | 0,02                     | 0,32              | 0,05                        |
| 9                        | 44,5             | 13             | 1                     | 45,5               | 0,02                     | 0,70              | 0,05                        |
| 10                       | 49,5             | 22             | 1                     | 40,5               | 0,02                     | 1,19              | 0,05                        |
| 11                       | 54,5             | 31             | 1                     | 35,5               | 0,02                     | $1,\!67$          | $0,\!05$                    |
| 12                       | 59,5             | 40             | 1                     | 30,5               | 0,02                     | 2,16              | 0,05                        |
| 13                       | 64,5             | 48             | 1                     | 25,5               | 0,02                     | 2,59              | $0,\!05$                    |
| 14                       | 69,5             | 54             | 1                     | 20,5               | 0,02                     | 2,91              | 0,05                        |
| 15                       | 74,5             | 59             | 1                     | 15,5               | 0,02                     | $3,\!18$          | $0,\!05$                    |
| 16                       | 78,6             | 62             | 1                     | 11,4               | 0,02                     | $3,\!35$          | 0,05                        |
|                          |                  |                | Vzorek                | č.2, p-p           | olarizad                 | ce                |                             |
| Měření                   | $lpha_2[^\circ]$ | $U_{\alpha_2}$ | $\delta U_{lpha_1 2}$ | $\gamma_2[^\circ]$ | $\delta\gamma_2[^\circ]$ | $R_{2p}[10^{-2}]$ | $\delta R_{2p} \ [10^{-2}]$ |
| 1                        | $^{3,5}$         | 1105           | 3                     | 86,5               | 0,02                     | $59,\!63$         | 0,23                        |
| 2                        | 8,5              | 517            | 2                     | 81,5               | 0,02                     | $27,\!90$         | 0,13                        |
| 3                        | 13,5             | 226            | 2                     | 76,5               | 0,02                     | 12,20             | 0,11                        |
| 4                        | 18,5             | 84             | 1                     | 71,5               | 0,02                     | $4,\!53$          | 0,06                        |
| 5                        | 23,5             | 31             | 1                     | 66,5               | 0,02                     | $1,\!67$          | $0,\!05$                    |
| 6                        | 28,5             | 11             | 1                     | 61,5               | 0,02                     | 0,59              | $0,\!05$                    |
| 7                        | $33,\!5$         | 11             | 1                     | 56,5               | 0,02                     | 0,59              | 0,05                        |
| 8                        | 38,5             | 24             | 1                     | 51,5               | 0,02                     | 1,30              | 0,05                        |
| 9                        | 43,5             | 41             | 1                     | 46,5               | 0,02                     | 2,21              | 0,05                        |
| 10                       | 48,5             | 58             | 1                     | 41,5               | 0,02                     | 3,13              | 0,05                        |
| 11                       | $53,\!5$         | 75             | 1                     | 36,5               | $0,\!02$                 | 4,05              | 0,06                        |
| 12                       | 58,5             | 90             | 1                     | 31,5               | $0,\!02$                 | 4,86              | 0,06                        |
| 13                       | 63,5             | 101            | 1                     | 26,5               | 0,02                     | 5,45              | 0,06                        |
| 14                       | 68,5             | 111            | 1                     | 21,5               | 0,02                     | $5,\!99$          | 0,06                        |
| 15                       | 73,5             | 136            | 1                     | 16,5               | 0,02                     | 7,34              | 0,06                        |
| 16                       | 78.6             | 100            | 1                     | 11.4               | 0,02                     | 5,40              | 0.06                        |

Tabulka 4: Měření při *p-polarizaci* zdroje. Naměřené hodnoty napětí v závislost na úhlu otočení vzorku  $\alpha$  vzhledem ke zdroji laserového paprsku (levá část tabulky). V pravé části tabulky jsou vypočtené hodnoty úhlu dopadu  $\gamma$  laserového svazku na vzorek a hodnoty odrazivosti  $R_p$  a to vše pro dva vzorky. V záhlaví tabulky je uvedena maximální hodnota napětí naměřená bez vzorku.

|        | Vzorek č.1                              | Vzorek č.2 |                                        |  |
|--------|-----------------------------------------|------------|----------------------------------------|--|
| Měření | Úhel natočení vzorku $lpha_1[^\circ]$   | Měření     | Úhel natočení vzorku $lpha_2[^\circ]$  |  |
| 1      | 35,72                                   | 1          | 32,12                                  |  |
| 2      | 37,10                                   | 2          | 29,34                                  |  |
| 3      | $32,\!56$                               | 3          | 30,88                                  |  |
| 4      | 38,12                                   | 4          | 30,54                                  |  |
| 5      | 35,20                                   | 5          | 30,70                                  |  |
| Průměr | $35,7 \pm 2,2$                          | Průměr     | $30,7\pm0,1$                           |  |
|        | $\theta_{\mathbf{B1}} = 54, 3 \pm 2, 2$ |            | $\theta_{\mathbf{B2}} = 59,28 \pm 0,1$ |  |

Tabulka 5: Úhel natočení vzorku  $\alpha$  vykazující nejmenší hodnotu detekovaného napětí. Data jsou uvedena pro oba vzorky. Chyba nastavení úhlu na goniometru činila  $\pm 0.02^{\circ}$ .

| Vzorek č.1, p-polarizace                                                                                                        |                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Měření                                                                                                                          | $lpha_1[^\circ]$                                                                                                                                      | $U_{lpha_1}$                                                                                                                                                               | $\delta U_{lpha_1}$                                                                                                                                                                                                                                                                                                  | $\gamma_1[^\circ]$                                                                                                                                                                                        | $\delta\gamma_1[^\circ]$                                                                                                                                                                                                                                                                                                                   | $R_{1p}[10^{-2}]$                                                                                                                                                               | $\delta R_{1p} \ [10^{-2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                               | 30,7                                                                                                                                                  | 7                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 59,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,38                                                                                                                                                                            | 0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2                                                                                                                               | 31,7                                                                                                                                                  | 5                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 58,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,27                                                                                                                                                                            | 0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3                                                                                                                               | 32,7                                                                                                                                                  | 4                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 57,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,22                                                                                                                                                                            | $0,\!05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                                                                                                                               | 33,7                                                                                                                                                  | 4                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 56,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,22                                                                                                                                                                            | $0,\!05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5                                                                                                                               | 34,7                                                                                                                                                  | 4                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 55,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,22                                                                                                                                                                            | $0,\!05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                                                                                                                               | 35,7                                                                                                                                                  | 4                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 54,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,22                                                                                                                                                                            | 0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7                                                                                                                               | 36,7                                                                                                                                                  | 4                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 53,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,22                                                                                                                                                                            | $0,\!05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                                                                                                                               | 37,7                                                                                                                                                  | 4                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 52,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,22                                                                                                                                                                            | $0,\!05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9                                                                                                                               | 38,7                                                                                                                                                  | 5                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 51,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | $0,\!27$                                                                                                                                                                        | $0,\!05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10                                                                                                                              | 39,7                                                                                                                                                  | 6                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 50,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,32                                                                                                                                                                            | 0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                              | 40,7                                                                                                                                                  | 7                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                    | 49,3                                                                                                                                                                                                      | 0,02                                                                                                                                                                                                                                                                                                                                       | 0,38                                                                                                                                                                            | 0,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vzorek č.2, p-polarizace                                                                                                        |                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                            | Vzorek                                                                                                                                                                                                                                                                                                               | č.2, p-p                                                                                                                                                                                                  | olariza                                                                                                                                                                                                                                                                                                                                    | ce                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Měření                                                                                                                          | $lpha_2[^\circ]$                                                                                                                                      | $U_{lpha_2}$                                                                                                                                                               | $rac{\mathrm{Vzorek}}{\delta U_{lpha_1 2}}$                                                                                                                                                                                                                                                                         | $\check{	ext{c.2, p-p}} \ \gamma_2 [^\circ]$                                                                                                                                                              | $rac{\delta 0}{\delta \gamma_2} [^{\circ}]$                                                                                                                                                                                                                                                                                               | ce $R_{2p}[10^{-2}]$                                                                                                                                                            | $\delta R_{2p} \ [10^{-2}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Měření<br>1                                                                                                                     | $lpha_2[^\circ]$<br>25,7                                                                                                                              | $\begin{array}{c} U_{\alpha_2} \\ 19 \end{array}$                                                                                                                          |                                                                                                                                                                                                                                                                                                                      | č.2, p-p<br>$\gamma_2[^\circ]$<br>64,3                                                                                                                                                                    | $\begin{array}{c} \mathbf{\hat{\delta\gamma_2}}[^\circ]\\ 0.02 \end{array}$                                                                                                                                                                                                                                                                | ce<br>$R_{2p}[10^{-2}]$<br>1,03                                                                                                                                                 | $\frac{\boldsymbol{\delta R_{2p}} \left[10^{-2}\right]}{0,05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Měření</b> 1 2                                                                                                               | $lpha_2[^\circ]$<br>25,7<br>26,7                                                                                                                      | $U_{\alpha_2}$<br>19<br>15                                                                                                                                                 | Vzorek $\delta U_{\alpha_1 2}$ 11                                                                                                                                                                                                                                                                                    | $\check{\mathbf{c}}$ .2, p-p<br>$\gamma_2[^\circ]$<br>64,3<br>63,3                                                                                                                                        | $\begin{array}{c} \mathbf{\hat{\delta\gamma_2}}[^\circ]\\ 0,02\\ 0,02 \end{array}$                                                                                                                                                                                                                                                         | $\begin{array}{c} \mathbf{\hat{R}_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \end{array}$                                                                                            | $ \begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0.05 \\ 0.05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Měření           1           2           3                                                                                      | $\begin{array}{c} \alpha_2[^{\circ}] \\ 25,7 \\ 26,7 \\ 27,7 \end{array}$                                                                             | $U_{\alpha_2}$<br>19<br>15<br>12                                                                                                                                           | Vzorek $\delta U_{\alpha_1 2}$ 111                                                                                                                                                                                                                                                                                   | $\check{\mathbf{c}}$ .2, p-p<br>$\gamma_2[^\circ]$<br>64,3<br>63,3<br>62,3                                                                                                                                | $\delta \gamma_2[^\circ]$ 0,02           0,02           0,02                                                                                                                                                                                                                                                                               | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ 1,03 \\ 0,81 \\ 0,65 \end{array}$                                                                           | $ \begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Měření           1           2           3           4                                                                          | $\begin{array}{c} \alpha_2[^{\circ}] \\ 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \end{array}$                                                                     | $egin{array}{c} U_{lpha_2} \ 19 \ 15 \ 12 \ 10 \ \end{array}$                                                                                                              |                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} \tilde{\mathbf{c}.2, \mathbf{p}-\mathbf{j}} \\ \hline \boldsymbol{\gamma_2}[^{\circ}] \\ \hline 64,3 \\ \hline 63,3 \\ \hline 62,3 \\ \hline 61,3 \end{array} $                        | $\delta \gamma_2[^\circ]$ 0,02           0,02           0,02           0,02           0,02                                                                                                                                                                                                                                                 | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \end{array}$                                                            | $ \begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Měření           1           2           3           4           5                                                              | $\begin{array}{c} \alpha_2[^{\circ}] \\ 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \\ 29,7 \end{array}$                                                             | $     \begin{bmatrix}       U_{\alpha_2} \\       19 \\       15 \\       12 \\       10 \\       9     $                                                                  | Vzorek $\delta U_{\alpha_1 2}$ 1           1           1           1           1           1           1                                                                                                                                                                                                             | $\begin{array}{c} \tilde{\mathbf{c}}.2, \ \mathbf{p}-\mathbf{j} \\ \hline \boldsymbol{\gamma}_{2}[^{\circ}] \\ 64,3 \\ 63,3 \\ 62,3 \\ 61,3 \\ 60,3 \end{array}$                                          | $\begin{array}{c} \mathbf{\hat{\delta \gamma_2}[^\circ]} \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \end{array}$                                                                                                                                                                                                              | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \\ 0,49 \end{array}$                                                    | $ \begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Měření           1           2           3           4           5           6                                                  | $\begin{array}{c} \pmb{\alpha_2[^{\circ}]} \\ 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \\ 29,7 \\ 30,7 \end{array}$                                               | $     \begin{array}{r} U_{\alpha_2} \\             19 \\             15 \\             12 \\             10 \\             9 \\             8 \\         \end{array}     $ | $     \begin{array}{r} Vzorek \\ \hline                                   $                                                                                                                                                                                                                                          | $\begin{array}{c} \tilde{\mathbf{c}}.2, \ \mathbf{p}\textbf{-}\mathbf{j} \\ \hline \boldsymbol{\gamma}_{2}[^{\circ}] \\ 64,3 \\ 63,3 \\ 62,3 \\ 61,3 \\ 60,3 \\ 59,3 \end{array}$                         | $\begin{array}{c} \mathbf{\hat{\delta \gamma_2}}[^\circ] \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \end{array}$                                                                                                                                                                                                      | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \\ 0,49 \\ 0,43 \end{array}$                                            | $ \begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Měření           1           2           3           4           5           6           7                                      | $\begin{array}{c} \alpha_2[^{\circ}] \\ 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \\ 29,7 \\ 30,7 \\ 31,7 \end{array}$                                             | $\begin{array}{c} U_{\alpha_2} \\ 19 \\ 15 \\ 12 \\ 10 \\ 9 \\ 8 \\ 8 \\ 8 \end{array}$                                                                                    | $     \begin{array}{r} Vzorek \\ \hline                                   $                                                                                                                                                                                                                                          | $\begin{array}{c} \tilde{\mathbf{c}}.2, \ \mathbf{p}-\mathbf{i}\\ \mathbf{\gamma}_{2}[^{\circ}]\\ 64,3\\ 63,3\\ 62,3\\ 61,3\\ 60,3\\ 59,3\\ 58,3\\ \end{array}$                                           | $\delta \gamma_2[^\circ]$ 0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02                                                                                           | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \\ 0,49 \\ 0,43 \\ 0,43 \end{array}$                                    | $\begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Měření           1           2           3           4           5           6           7           8                          | $\begin{array}{c} \alpha_2[^{\circ}] \\ 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \\ 29,7 \\ 30,7 \\ 31,7 \\ 32,7 \end{array}$                                     | $\begin{array}{c} U_{\alpha_2} \\ 19 \\ 15 \\ 12 \\ 10 \\ 9 \\ 8 \\ 8 \\ 9 \\ \end{array}$                                                                                 | Vzorek $\delta U_{\alpha_1 2}$ 1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1                                                                                     | $\begin{array}{c} \tilde{\mathbf{c}}.2, \ \mathbf{p}\textbf{-}\mathbf{j} \\ \hline \boldsymbol{\gamma}_{2}[^{\circ}] \\ 64,3 \\ 63,3 \\ 62,3 \\ 61,3 \\ 60,3 \\ 59,3 \\ 58,3 \\ 58,3 \\ 57,3 \end{array}$ | $\delta \gamma_2[^\circ]$ 0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02                                                             | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \\ 0,49 \\ 0,43 \\ 0,43 \\ 0,49 \end{array}$                            | $\begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Měření           1           2           3           4           5           6           7           8           9              | $\begin{array}{c} \pmb{\alpha_2[^\circ]} \\ \hline 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \\ 29,7 \\ \hline 30,7 \\ 31,7 \\ 32,7 \\ \hline 33,7 \\ \end{array}$ | $U_{\alpha_2}$ 19 15 12 10 9 8 8 9 11                                                                                                                                      |                                                                                                                                                                                                                                                                                                                      | $\tilde{\mathbf{c}}$ .2, p-j<br>$\gamma_2[^\circ]$<br>64,3<br>63,3<br>62,3<br>61,3<br>60,3<br>59,3<br>58,3<br>57,3<br>56,3                                                                                | $\begin{array}{c} \mathbf{\hat{\delta \gamma_2}}[^\circ] \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \\ 0,02 \end{array}$                                                                                                                                                              | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \\ 0,49 \\ 0,43 \\ 0,43 \\ 0,43 \\ 0,49 \\ 0,59 \end{array}$            | $\begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05$ |
| Měření           1           2           3           4           5           6           7           8           9           10 | $\begin{array}{c} \pmb{\alpha_2}[^{\circ}] \\ 25,7 \\ 26,7 \\ 27,7 \\ 28,7 \\ 29,7 \\ 30,7 \\ 31,7 \\ 32,7 \\ 33,7 \\ 34,7 \\ \end{array}$            | $\begin{array}{c} U_{\alpha_2} \\ 19 \\ 15 \\ 12 \\ 10 \\ 9 \\ 8 \\ 8 \\ 9 \\ 11 \\ 13 \\ \end{array}$                                                                     | Vzorek $\delta U_{\alpha_1 2}$ 1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1 | $\tilde{\mathbf{c}}$ .2, p-p<br>$\gamma_2[^\circ]$<br>64,3<br>62,3<br>61,3<br>60,3<br>59,3<br>58,3<br>57,3<br>56,3<br>55,3                                                                                | $\delta \gamma_2[^\circ]$ 0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02           0,02 | $\begin{array}{c} \mathbf{ce} \\ \hline \mathbf{R_{2p}}[10^{-2}] \\ \hline 1,03 \\ 0,81 \\ 0,65 \\ 0,54 \\ 0,49 \\ 0,43 \\ 0,43 \\ 0,43 \\ 0,49 \\ 0,59 \\ 0,70 \\ \end{array}$ | $\begin{array}{c} \boldsymbol{\delta R_{2p}} \ [10^{-2}] \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05 \\ 0,05$ |

Tabulka 6: Proměřování okolí Brewsterova úhlu při *p-polarizaci* zdroje. Naměřené hodnoty napětí v závislost na úhlu otočení vzorku  $\alpha$  vzhledem ke zdroji laserového paprsku (levá část tabulky). V pravé části tabulky jsou vypočtené hodnoty úhlu dopadu  $\gamma$  laserového svazku na vzorek a hodnoty odrazivosti  $R_p$  a to vše pro dva vzorky.

| Metoda určení                                    | Vzorek č.1               | Vzorek č.2               |
|--------------------------------------------------|--------------------------|--------------------------|
| z Brewsterova úhlu                               | $N_1 = 1,39 \pm 0,04$    | $N_2 = 1,683 \pm 0,002$  |
| fitem hodnot odrazivosti pro s-polarizaci zdroje | $N_{1s} = 1,60 \pm 0,02$ | $N_{2s} = 1,46 \pm 0,01$ |
| fitem hodnot odrazivosti pro p-polarizaci zdroje | $N_{1p} = 1,44 \pm 0,03$ | $N_{2s} = 1,72 \pm 0,02$ |

Tabulka 7: Indexy lomu vzorků určené různými metodami - z Brewsterova úhlu a fitem získané závislosti odrazivosti na úhlu dopadu a to pro obě polarizace zdroje.



Figure 2: Závislost odrazivosti R na úhlu dopadu  $\gamma$  laserového paprsku na vzorek č.1 (levá část) a vzorek č.2 (pravá část). V grafech jsou znázorněny obě možné polarizace zdroje - *s-polarizace* i *p-polarizace*. Data jsou proložena teoretickou závislostí. Grafy obsahují i chybové úsečky, ovšem ty jsou příliš malé, než aby byly rozeznatelné.



Figure 3: Závislost odrazivosti R na úhlu dopadu  $\gamma$  laserového paprsku na vzorek č.1 (levá část) a vzorek č.2 (pravá část) v okolí Brewsterova úhlu při *p-polarizaci* zdroje. Data jsou proložena teoretickou závislostí.

# 6 Literatura

- 1. I. Pelant et al.; Fyzikální praktikum III, Optika; Matfyzpress; Praha, 2005
- 2. Pokyny k měření k úloze č. *Ověření Fresnelových vzorců*: http://physics.mff.cuni.cz/vyuka/zfp/\_media/zadani/pokyny/mereni\_307.pdf
- 3. P. Malý; Optika; Karolinum; Praha, 2008