Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č. 6

Název úlohy: Studium ohybových jevů v laserovém svazku

Jméno: Jan Hrabovský

Obor: FOF

Datum měření: 14.3.2018

Datum odevzdání: 20.3.2018

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:....

dne:

Studium ohybových jevů v laserovém svazku

Základní fyzikální praktikum (Fyzikální praktikum III. OF)

Vypracoval: Jan Hrabovský UKČO: 61088176 Datum měření: 14.3.2018

Experimentální podmínky:

Tlak: 983,6 hPa

Teplota: 24,2 °C

Vlhkost: 29,9 %

Pracovní úkoly:

- 1. Ze změřeného ohybového obrazce zobrazeného na milimetrovém papíru určete mřížkovou konstantu mřížky
- 2. Pomocí aparatury proměřte ohybové obrazce: mřížky, štěrbiny a dvojštěrbiny. Konkrétní difrakční prvky vybere vyučující. Zpracováním měření určete parametry použitých difrakčních prvků
- 3. Okalibrujte mikroskopový okulár s použitím metody lineární regrese, odhadněte relativní chybu kalibrace
- 4. Mikroskopem změřte parametry všech použitých difrakčních prvků
- 5. Výsledky měření v úkolech č.1, č.2 a č.4 srovnejte a diskutujte, v kterém případě jsou spočtené parametry zatíženy nejmenší chybou

Teoretická část:

Jako difrakci uvažujeme odchylku od přímočarého šíření světla, která nemá své opodstatnění v důsledku odrazu či lomu. V případě tohoto praktika tak můžeme uvažovat situaci průchodu laserového svazku úzkou štěrbinou, která je umístěna v jinak pro světlo nepropustné překážce. Jako Fraunhoferovu difrakci označujeme příklad, kdy difrakci pozorujeme v dostatečné vzdálenosti za štěrbinou (*l*), přičemž rozměr štěrbiny (*b*) je značně menší než vzdálenost stínítka/detektoru. Jejím výsledkem jsou difrakční obrazce zachycené na stínítku, které se liší jak svým tvarem tak polohou svých maxim v závislosti na parametrech měření.

Intenzita světla dopadající na stínítko při ohybu na štěrbině šířky *b* je v závislosti na úhlu dopadu φ a použité vlnové délce λ přímo úměrná vztahu (1)

$$\left(\frac{\sin\left(\frac{\pi b}{\lambda}\sin\varphi\right)}{\frac{\pi b}{\lambda}\sin\varphi}\right)^{2}$$
(1)

V případě, kdy je úhel dopadu malé malý (znatelně menší jak 1), lze použít paraxiální aproximace a s vyjádřit $sin\varphi \approx \varphi$. Minimum naměřené intenzity na detektoru následně odpovídá vztahu (2), kde k je řád difrakčního maxima a jedná se o celé číslo.

$$\varphi = \frac{k\lambda}{b} \tag{2}$$

V případě dvojice blízkých štěrbin je nutné ještě výraz (1) přenásobit výrazem (3), který mimo hlavních minim vykresluje i další minima opět v paraxiální aproximaci podléhající podmínce (4)

$$\cos^{2}\left(\frac{\pi a}{\lambda}\sin\varphi\right)$$
(3)

$$\varphi = \frac{(2k+1)\lambda}{2a} \, kde \, k \, \in Z \tag{1}$$

(4)

V případě optické mřížky jsou pozorována ostrá maxima dopadající intenzity, které odpovídají úhlům dopadu (5) a veličina *a* následně reprezentuje parametr mřížky tzv. mřížkovou konstantu (vzdálenost dvou sousedních štěrbin).

$$\varphi = \frac{k\lambda}{a} \ kde \ k \ \in Z \tag{5}$$

Aparatura pro měření ohybových vlastností laserového svazku je zobrazena na Nákresu 1.

Nákres.1. Zobrazení měřící aparatury pro studium ohybových vlastností

Z geometrie měření je pak ještě důležité uvést vztah pro výpočet úhel pro zkoumané maximum jako (6)

$$\varphi = \arctan(x/l) \tag{6}$$

Výsledky měření:

Na začátku laboratorní úlohy byly zjištěny okolní laboratorní podmínky a příslušné parametry aparatury, které byly následně použity při výpočtech. Okolní tlak byl odečten jako 983,6 hPa, teplota 24,2 °C a vlhkost 29,9 %. K měření byl použit He-Ne laser s definovaným středem emise při 632,8 nm.

Pro porovnání získaných hodnot v dalších částech měření byly všechny optické prvky nejprve zkoumány pomocí okuláru na optickém mikroskopu, který bylo nutné nejdříve okalibrovat na přiloženém mikroskopickém sklíčku s vyrytou kalibrační stupnicí. Kalibraci okuláru lze sledovat v Tab.1 a na Obr.1. Výslednou lineární regresí bylo dosaženo vztahu pro přepočet mezi dílky na stupnici okuláru ve tvaru y = 1,625 + 4,923 s hodnotou R² = 0,9999. V Tabulce 2

lze následně nalézt odečtené hodnoty a přepočtené reálné velikosti charakteristických rozměrů předložených dvojštěrbin, v Tabulce 3 lze nalézt hodnoty pro štěrbiny a v Tabulce 4 pro proměřovanou mřížku. Každý rozměr byl měřen několikrát na různých místech vzorku a následně byl uvažován jejich aritmetický průměr. Chyba byla uvažována jak statistická tak chyba odečtu ze stupnice na okoláru (polovina nejmenšího dílku). Je však nutné konstatovat, že statistická odchylka má větší vliv na výsledek měření. Taktéž kvalita některých prvků se lišila v závislosti na měřené oblasti (Viz. Obr.2). U dvojštěrbin byly proměřovány šířky štěrbin a jejich vzájemná vzdálenost. Výsledná vzdálenost středů štěrbin byla následně dopočtena ze znalosti jejich šířek. U ostatních prvků byly rozměry řešeny přímo. Pro dvojštěrbinu A byla stanovena šířka štěrbin jako $a_{A2} = (133 \pm 2) \mu m$ a vzdálenost jejich středů $d_{A2} = (607 \pm 2) \mu m$, pro dvojštěrbinu B byla stanovena šířka štěrbin jako $a_{B2} = (205 \pm 2) \mu m$ a vzdálenost jejich středů $d_{B2} = (606 \pm 2) \mu m$ a pro pro dvojštěrbinu C byla stanovena šířka štěrbin jako $a_{C2} = (202 \pm 3) \mu m$ a vzdálenost jejich středů $d_{C2} = (1199 \pm 3) \mu m$.

V případě zkoumaných štěrbin byly udečteny hodnoty $a_C = (468 \pm 2) \mu m$, $a_B = (216 \pm 1) \mu m$ a $a_A = (133 \pm 6) \mu m$. Pro optickou mřížku byla nalezena hodnota $a_{m/okul} = (55,7 \pm 1,1) \mu m$.

Obr. 1. Kalibrace okuláru mikroskopu na předloženém standardu

Α					
a₁ [dílky]	a₁ [<i>µm</i>]	d [dílky]	d [<i>µm</i>]	a ₂ [dílky]	a₂ [μm]
79	133	290	476	80	135
80	135	290	476	81	137
76	128	291	478	76	128
78	132	290	476	79	133
78	132	291	478	80	135
	132 ± 2		477 ± 1		134 ± 3
			d _{A2} =	(607 <u>+</u>	2) μm

Tab.2. Okalibrování jednotlivých optických součástek - dvouštěrbiny

В					
a₁ [dílky]	a₁ [<i>μm</i>]	d [dílky]	d [<i>µm</i>]	a ₂ [dílky]	a₂ [µm]
123	205	244	401	124	206
124	206	243	400	123	205
123	205	243	400	124	206
123	205	244	401	123	205
121	202	246	405	123	205
	$\textbf{204} \pm \textbf{2}$		401 ± 2		205 ± 1
			$d_{B2} =$	(606 <u>+</u>	1) μm
С					
o [dílku]				F 1/11 3	
a ₁ [uliky]	a₁ [<i>μm</i>]	d [dílky]	d [<i>µm</i>]	a2[dilky]	a₂ [μm]
116	a ₁ [μm] 193	d [dilky] 613	d [μm] 1001	a ₂ [dilky]	a ₂ [μm] 205
116 116	a ₁ [μm] 193 193	d [dilky] 613 610	d [μm] 1001 996	a ₂ [dilky] 123 122	a ₂ [μm] 205 203
116 116 123	a ₁ [μm] 193 193 205	d [dilky] 613 610 612	d [μm] 1001 996 999	a ₂ [dilky] 123 122 121	a ₂ [μm] 205 203 202
116 116 123 123	a ₁ [μm] 193 193 205 205	d [dilky] 613 610 612 610	d [μm] 1001 996 999 996	a ₂ [dilky] 123 122 121 120	a ₂ [μm] 205 203 202 200
116 116 123 123 119	a ₁ [μm] 193 193 205 205 198	d [dilky] 613 610 612 610 611	d [μm] 1001 996 999 996 998	a ₂ [dilky] 123 122 121 120 121	a ₂ [μm] 205 203 202 200 200
116 116 123 123 119	a ₁ [μm] 193 205 205 198 199 ± 6	d [dilky] 613 610 612 610 611	d [μm] 1001 996 999 996 998 998±2	a ₂ [dilky] 123 122 121 120 121	a ₂ [μm] 205 203 202 200 200 202 202 202 ± 2

Tab. 3. Charakterizace štěrbin pomocí okuláru

a _c [dílky]	a _c [μm]	a _B [dílky]	a _Β [μm]	a _A [dílky]	a _A [μm]
283	465	131	218	82	138
285	468	130	216	83	140
286	470	129	215	75	127
285	468	130	216	79	133
286	470	131	218	76	128
	468 <u>±</u> 2		216 <u>+</u> 1		133 <u>+</u> 6

Tab.4. Měření parametrů optické mřížky

a [dílky]	a [μm]
30	53,7
31	55,3
32	56,9
32	56,9
31	55,3
32	56,9
31	55,3
31	55,3
průměr	55,7 ± 1,1

Obr.2. Použité optické prvky, vlevo štěrbina a vpravo optická mřížka

V další části měření byl na obdržený milimetrový papír zaznamenán ohybový obrazec zkoumané mřížky. K jeho změření byl použit standardně využívaný He-Ne laser s maximem emisního pásu centrovaným při 632,8 nm. Vzdálenost mřížky od stínítka byla odečtena ze stupnice na experimentálním rameni aparatury jako 102,8 cm Záznam měření na milimetrovém papíru lze nalézt v Příloze 1. Jako chyba měření je uvažována půlka jednoho dílku stupnice, tedy 0,5 mm. Polohy jednotlivých maxim od středového maxima nultého řádu, včetně dopočtených úhlů a hodnot mřížkových konstant jsou uvedeny v Tab.5. Použitá mřížka byla následně proměřena i pomocí fotodetektoru na pohyblivé optické lavici. Záznam měření je zachycen na Obr.3. a v Tab.6. Jako chyba měření byla v případě detektoru uvažována odchylka 0,01 mm a za pomocí odečtu vzdáleností difrakčních maxim byla principiálně stejně jako v případu milimetrového papíru spočtena hodnota příslušných úhlů a následně mřížkových parametrů. Je nutné ještě uvést, že detektor byl umístěn ve stejné vzdálenosti jako v předchozím případě stínítko s milimetrovým papírem. Pomocí detektoru za použití (5) a (6) byla nalezená hodnota mřížkové konstanty $a_{m/det} = (53,6 \pm 0,2) \ \mu m$

X [mm]	k	$oldsymbol{arphi} \cdot 10^{-3}$ [rad]	a [µm]
0,0	0	0	-
11,5		11,2	56,6
11,5	1	11,2	56,6
23,0	2	22,4	56,6
23,0	2	22,4	56,6
34,5	3	33,5	56,6
34,5		33,5	56,6
46,0		44,7	56,6
45,5	4	44,2	57,2

Tab.5. Záznam odečtených hodnot z milimetrového papíru při studiu ohybu světla na difrakční mřížce včetně dodatečně vypočtených hodnot pro příslušné úhly φ a z nich zjištěné hodnoty mřížkové konstanty, veličina k představuje řád difrakčního maxima

57,5	_	55,9	56,6
57,0	5	55,4	57,1
69,0	<i>c</i>	67,0	56,7
68,5	6	66,5	57,1
80,5		78,1	56,7
80,0	/	77,6	57,1
92,0	8	89,2	56,7
91,5		88,7	57,0
104,0	9	100	56,5
103,0		99,8	57,1
115,5	10	111,8	56,6
114,5	10	110,9	57,1
127,5		123,4	56,4
126,0	11	121,9	57,1

Obr.3. Záznam měření ohybu na optické mřížce při použití posuvné lavice s automatickým detektorem, v grafu jsou zároveň znázorněny vzdálenosti jednotlivých maxim vyšších řádů od nultého maxima

X [mm]	k	$oldsymbol{arphi} \cdot 10^{-3}$ [rad]	a [µm]
0	0	0	-
12,2	1	11,9	53,3
12,11		11,8	53,7
24,32		23,6	53,5
24,22	2	23,5	53,7

Tab.6. Záznam měření difrakce na mřížce pomocí optické lavice a fotodetektoru

Následně byly opět pomocí fotodetektoru a optické lavice proměřeny předložené štěrbiny o rozdílných šířkách. Celkové srovnání vývoje polohy a tvaru maxim na šířce štěrbin je zobrazeno na Obr. 4. Jednotlivá měření včetně odečtu poloh minim vzhledem k nultému maximu lze vidět na Obr. 5, Obr.6. a Obr.7. Z hodnot pro jednotlivá maxima stejných řádů byly opět dopočítány pomocí (6) hodnoty příslušných úhlů a následně i šířky štěrbin pomocí (2). Aritmetickým průměrem dílčích obdržených hodnot pak byly získány hodnoty $b_A = (120 \pm 1) \,\mu m$, $b_B = (212 \pm 2) \,\mu m$ a $b_C = (465 \pm 12) \,\mu m$.

Obr.4. Porovnání závislosti pozorované poziční intenzity světla na detektoru v závislosti na zvolené šířce štěrbiny v pořadí šířky štěrbin $b_A < b_B < b_C$

Obr.5. Záznam měření intenzity světla na pozičním detektoru pro štěrbiny A

Obr.6. Záznam měření intenzity světla na pozičním detektoru pro štěrbinu B s použitím ND filtru 0,5

Obr.7. Záznam měření intenzity světla na pozičním detektoru pro štěrbinu C s použitým ND filtrem 1,3 **Tab.7.** Odečtené hodnoty z polohy maxim na záznamu z fotodetektoru pro jednoduché štěrbiny A, B a C

A: x [mm]	k	$oldsymbol{arphi} \cdot 10^{-3}$ [rad]	a [µm]
5,45		5,3	119,4
5,47	1	5,3	119,0
10,79		10,5	120,6
10,88	2	10,6	119,6
B: x[mm]	k	$oldsymbol{arphi} \cdot 10^{-3}$ [rad]	a [µm]
3,05	1	3,0	213,4
3,11		3,0	209,2
6,11	_	5,9	213,0
6,14	2	6,0	212,0
C: x[mm]	k	$arphi \cdot 10^{-3}$ [rad]	a [µm]
1,45		1,4	448,8
1,44	1	1,4	451,9
2,76		2,7	471,6
2,72	2	2,6	478,5
4,15	_	4,0	470,4
4,16	3	4,0	469,3

V poslední části měření pak byly proměřeny předložené dvouštěrbiny, u kterých byl opět hledaný parametr jejich šířky a zároveň i vzdálenost středů těchto štěrbin. Souhrnný přehled všech měření lze nalézt na Obr. 8, kde lze jasně pozorovat vývoj obrazců v závislosti na zvoleném typu štěrbiny. Z pořízených dat, byly opět získány hodnoty pro hledaná hlavní minima, ze kterých byla pomocí vzorce (5) získána hodnota pro příslušné úhly a pomocí vzorce (2) pro jejich šířku, jak je zaneseno v Tab.8. Z pozorovaných vedlejších minim na difrakčních obrazcích byly následně dopočteny jejich vzájemné vzdálenosti (4) (Tab.9) Pro přehlednost již nebyly přikládány další grafy dokumentující měření, jelikož k pořízení přesnějších hodnot byly použity ohybové obrazce bez aplikovaných ND filtrů, které umožnily lepší vykreslení vedlejších minim. V případě potřeby je může autor doplnit.

Obr.8. Ohybové obrazce použitých dvojštěrbin

Tab. 8. Odečtené hodnoty z proměřených grafů ohybových obrazců na dvojštěrbině včetně dopočítaných hodnot šířek jednotlivých štěrbin – a_{X2}

A: x[mm]	k	$\varphi \cdot 10^{-3}$ [rad]	a _{A2} [μm]	Ø [µm]
5,544	1	5,39	117	
5,401	1	5,25	120	
10,901		10,60	119	$(119 \pm 1) \mu m$
10,912	2	10,61	119	

B: x[mm]	k	$\varphi \cdot 10^{-3}$ [rad]	$a_{B2} \left[\mu m \right]$	Ø [µm]
3,201		3,11	203	
3,19	1	3,10	204	
6,149	2	5,98	212	
6,094	2	5,93	214	$(208 \pm 4) \mu m$
9,46	_	9,20	206	
9,306	3	9,05	210	
C: x[mm]	k	$\boldsymbol{\varphi}\cdot 10^{-3}$ [rad]	a _{C2} [μm]	Ø [µm]
C: x[mm] 3,113	k	φ · 10 ⁻³ [rad] 3,03	a C2 [μm] 209	Ø [µm]
C: x[mm] 3,113 3,058	k 1	φ · 10⁻³[rad] 3,03 2,97	a _{C2} [μm] 209 213	Ø [µm]
C: x[mm] 3,113 3,058 6,006	k 1	φ · 10⁻³[rad] 3,03 2,97 5,84	ac2 [μm] 209 213 217	Ø [µm]
C: x[mm] 3,113 3,058 6,006 6,347	k 1 2	 φ · 10⁻³[rad] 3,03 2,97 5,84 6,17 	ac2 [μm] 209 213 217 205	Ø [μm] (211± 4) μm
C: x[mm] 3,113 3,058 6,006 6,347 9,196	k 1 2	 φ · 10⁻³[rad] 3,03 2,97 5,84 6,17 8,94 	ac2 [μm] 209 213 217 205 21	Ø [μm] (211± 4) μm

Tab. 8. Odečtené hodnoty vedlejších minim z proměřených grafů ohybových obrazců na dvojštěrbině včetně dopočítaných hodnot středních vzdáleností štěrbin – d_{X2}

A: x[mm]	k	$\varphi \cdot 10^{-3}$ [rad]	d _{A2} [μm]	Ø [µm]
1,474	1	1,43	662	
1,639		1,59	596	
2,563	2	2,49	635	
2,651		2,58	614	$(624 \pm 23) \mu m$
3,696	3	3,59	616	
3,652		3,55	624	
B: x[mm]	k	$\varphi \cdot 10^{-3}$ [rad]	d _{B2} [μm]	Ø [µm]
1,551	1	1,51	629	
1,628		1,58	600	
4,642	4	4,51	631	$(622 \pm 15) \mu m$
4,675		4,55	626	
C: x[mm]	k	$\varphi \cdot 10^{-3}$ [rad]	d _{C2} [μm]	Ø [µm]
0,748	1	0,73	1305	
0,858		0,83	1137	
1,331	2	1,29	1222	(1213±57)
1,364		1,33	1193	μm
1,837	3	1,79	1240	
1,925		1,87	1183	

Nalezené hodnoty pro specifické rozměry použitých štěrbin jsou tedy následující: Pro dvojštěrbinu A byla stanovena šířka štěrbin jako $a_{A2/det} = (119 \pm 1) \mu m$ a vzdálenost jejich středů $d_{A2/det} = (624 \pm 23) \mu m$, pro dvojštěrbinu B byla stanovena šířka štěrbin jako $a_{B2/det} = (208 \pm 4) \mu m$ a vzdálenost jejich středů $d_{B2/det} = (622 \pm 15) \mu m$ a pro pro dvojštěrbinu C byla stanovena šířka štěrbin jako $a_{C2/det} = (211 \pm 4) \mu m$ a vzdálenost jejich středů $d_{C2/det} = (1213 \pm 57) \mu m$.

Diskuse:

V rámci měření byly zohledněny všechny podstatné odchylky a byly uvažovány chyby odečtů na jednotlivých přístrojích. Konkrétně je tak uvedeno v předchozím textu. Pokud nebylo stanoveno jinak, jako chyba odečtu se brala polovina nejmenšího dílky z použité stupnice, krok měření (rozlišení) a byly taktéž uvažovány statistické odchylky od souborů naměřených dat.

V případě studované mřížky můžeme vidět, že získané hodnoty ze všech tří postupů jsou si velice blízké, v případě odečtu na milimetrovém papíře a pomocí okuláru se navíc shodují v případě uplatnění svých chybovostí, z čehož je usuzováno, že měření bylo relativně přesné.

V případě studovaných štěrbin byly již odchylky mezi parametry získanými rozdílnými metodami větší, pouze v případě štěrbiny C došlo rovněž ke shodě v rámci chybovosti. Nicméně v rámci celkové přesnosti měření byly rozdíly pod 5 % z celkové dané hodnoty měřeného parametru.

U dvouštěrbin byly sledovány dva kvalitativní parametry, a to jak jejich šířka, tak jejich vzdálenost středů. Z obdržených hodnot lze opět usuzovat na relativní přesnost měření, jelikož v řadě případů se hodnoty shodovaly v rámci svých odchylek, nebo jim byly velice blízko.

Při zohlednění celkové chybovosti měření musí taktéž brán zřetel na kvalitu seřízení aparatury, které mohlo vykazovat nedostatky, kvalitu optických prvků, které jak je vidět z Obr.2 nemusí být zcela přesné v homogenitě sledovaných parametrů a řadě dalších parametrů. Dále nebylo zasahováno do nastavení spojné čočky a přední části aparatury vyjma vkládání různých ND filtrů. V případech kdy to bylo možné, byla snaha eliminovat chybu větším množstvím pořízených hodnot a následně stanovení jejich průměru a směrodatné odchylky.

V případě použití fotodetektoru docházelo k horším odečtům vzdálenějších minim a maxim, vzhledem k jeho poměrně nízkému rozlišení a malé operační vzdálenosti.

Potvrzení správnosti příslušných trendů v případě měnících se parametrů štěrbin a dvouštěrbin lze sledovat na Obr.4 a Obr.8.

Vliv verifikačního "sloního" razítka nebyl pozorován.

Závěr:

Pomocí optického mikroskopu s okulárem osazeným stupnicí pro odečet vzdáleností byly zjištěny hledané parametry optických prvků. Tento okulár byl nejprve v rámci měření okalibrován (Obr.1 a Tab.1.) Následně byly všechny prvky proměřeny pomocí optické lavice dle Nákresu1 a výsledky mezi sebou porovnány. Pozorované odchylky byly následně diskutovány a to včetně uvažovaných chyb a odchylek. Pro přehlednost zde uvádíme všechny naměřený hodnoty zvláště pro každý optický prvek. Autor dále musí konstatovat, že vliv verifikačního razítka (slona) neměl na výsledky měření vliv. Výsledky měření lze najít v grafech na Obr.1 až Obr.8 a zanesené v Tab.1 až Tab.9

Parametry mřížky byly stanoveny třemi způsoby – pomocí optické lavice s detektorem ($a_{m/det} = (53,6 \pm 0,2) \mu m$), pomocí milimetrového papíru jako záznamové plochy ($a_{m/opapir} = (56,8 \pm 0,3) \mu m$) a pomocí okuláru $a_{m/okul} = (55,7 \pm 1,1) \mu m$.

Šterbiny byly již proměřovány pouze za pomoci detektoru $(b_A = (120 \pm 1) \mu m, b_B = (212 \pm 2) \mu m$ a $b_C = (465 \pm 12) \mu m.)$ a s využitím okuláru $(a_A = (133 \pm 6) \mu m, a_B = (216 \pm 1) \mu m$ a $a_C = (468 \pm 2) \mu m.)$

Taktéž tomu bylo i v případě dvojštěrbin, kdy byl použit detektor a následně i okalibrovaný okulár. Z difrakčních obrazců byly odečteny tyto hodnoty pro dvojštěrbinu A: $[a_{A2/det} = (119 \pm 1) \mu m$, $d_{A2/det} = (624 \pm 23) \mu m$], B: $[a_{B2/det} = (208 \pm 4) \mu m$, $d_{B2/det} = (622 \pm 15) \mu m$] a C: $[a_{C2/det} = (211 \pm 4) \mu m \ d_{C2/det} = (1213 \pm 57) \mu m]$. Pomocí okuláru následně pro dvojštěrbinu A: $[a_{A2} = (133 \pm 2) \mu m$, $d_{A2} = (607 \pm 2) \mu m$], B: $[a_{B2} = (205 \pm 2) \mu m$, $d_{B2} = (606 \pm 2) \mu m$] a C: $[a_{C2} = (202 \pm 3) \mu m$, $d_{C2} = (1199 \pm 3) \mu m$].

Literatura:

[1] Studijní text k fyzikálnímu praktiku III.: Studium ohybových jevů v laserovém svazku[2] Pokyny k měření úlohy fyzikálního praktika III.: Studium ohybových jevů v laserovém

svazku

[3] P. Malý, Optika, Karolinum 2013