1 Pracovní úkol

- 1. U feritových kroužků I, II a III
 - a) Změřte závislost indukce $B_{\rm m}$ a ko
ercitivní síly $H_{\rm C}$ na intensitě magnetického pol
e $H_{\rm m}.$
 - b) Sledujte základní typy hysterezních smyček v závislosti na intensitě pole Hm a zjistěte přibližně, při které intensitě pole $H_{\rm m}$ (nebo v kterém intervalu intensit polí) jednotlivé typy hysterezních smyček přecházejí jeden v druhý.
- 2. Okalibrujte aparaturu pomocí střídavého napětí známé velikosti.
- 3. Výsledky dle bodu 1a) zpracujte tabelárně a graficky.

2 Teoretický úvod

V této úloze budeme zkoumat závislost magnetické indukce a koercitivní síly na intenzitě magnetického pole aplikovaného na ferity.

Ferity jsou magnetické oxidy (se vzorem $M^{2+}Fe_2^{3+}O_4$, kde M je kov s oxidačním číslem 2 [1]). Oproti klasickým feromagnetickým látkám mají však mnohem větší měrný odpor a ztráty vířivými proudy jsou proto nepatrné.

Hysterezní smyčka je závislost magnetické indukce B na intenzitě magnetického pole H. Není to funkce (kromě případu 1a), protože magnetická indukce závisí také na způsobu, jak jsme se na danou hodnotu intenzity H dostali. Plocha ohraničená touto křivkou udává práci potřebnou k přemagnetování látky [1]. Rozeznáváme čtyři typy hysterézních smyček [1]

- a) lineární
- b) Rayleigho
- c) normální
- d) zaškrcená

Jejich tvary jsou na obrázcích 1a) až 1d).

2.1 Princip měření

Používáme vzorky feritů ve tvaru kroužků, protože se v nich magnetický tok zcela uzavírá. Primární vinutí o n_1 závitech je rozloženo rovnoměrně po obvodu kroužku a sekundární vinutí o n_2 závitech (pro měření indukčního toku) je realizováno málo (většinou šesti) závity navinutými na jednom místě. Na primární vinutí kroužku přivedeme střídavý proud I, magnetické pole v kroužku pak spočítáme jako [1]

$$H = \frac{n_1 I}{\pi d} \,, \tag{1}$$

kde

$$d = (d_1 + d_2)/2 \tag{2}$$

a d_1, d_2 jsou vnitřní resp. vnější průměry kroužku.

Napětí úměrné této magnetické intenzitě přivedeme na horizontální destičky osciloskopu (v obrázku 2 "osciloskop x"). Na y-ovou osu osciloskopu přivedeme pomocí integrátoru napětí úměrné indukci B ve vzorku, před integrátorem je napětí úměrné časové derivaci indukce.

Měření provádíme podle zapojení na obrázku 2.

Velikost koercitivní síly H_c pak lze vypočítat snadno díky linearitě horizontální stupnice osciloskopu.

$$H_{\rm c} = \frac{U_{\rm c}}{U_x} H_{\rm m} \,, \tag{3}$$

kde $H_{\rm m}$ je maximální hodnota hodnota elektrické intenzity, kterou můžeme dopočítat např. podle (1), U_x je maximální hodnota napětí na horizontální ose osciloskopu odpovídající $H_{\rm m}$ a $U_{\rm c}$ je hodnota napětí v místě, kde křivka protíná horizontální osu osciloskopu (za předpokladu, že je smyčka vycentrovaná).

2.2 Kalibrace

Svislá osa musí být zkalibrována, protože neznáme konstantu úměrnosti mezi napětím U_y , které ukazuje osciloskop na y-ové ose a skutečnou maximální výchylkou napětí U_m na vstupních svorkách integrátoru.

Obr. 3: Schéma zapojení pro kalibraci osciloskopu

Obvod zapojíme podle schématu na obrázku 3 a ke kalibraci použijeme voltmetr. Napětí na odporovém normálu U_{eff} lze z napětí U_0 naměřeného na voltmetru podle Ohmova zákona dopočítat jednoduchým vztahem [2]

$$U_{\rm eff} = \frac{R_{\rm n}}{R_{\rm n} + R_{\rm d}} U_0 \,, \tag{4}$$

kde jsme předpokládali ideální voltmetr i osciloskop, což si v případě použitého multimetru i osciloskopu můžeme dovolit.

Z efektivního napětí naměřeného na odporovém normálu lze pomocí voltmetru a napětí U_y naměřeném na osciloskopu vypočítat konstantu úměrnosti k jako [1]

$$k = \frac{U_{\rm eff}\sqrt{2}}{U_{\rm v}\omega}\,.\tag{5}$$

Maximální výchylku napětí $U_{\rm m}=U_{\rm eff}\sqrt{2}$ pak můžeme pomocí konstanty kvypočítat z údaje na osciloskopu jako

$$U_{\rm m} = k U_{\rm y} \omega \,. \tag{6}$$

Maximální hodnotu magnetické indukce pak lze dopočítat následujícím vztahem [1]

$$B_{\rm m} = \frac{U_{\rm eff}\sqrt{2}}{\omega S n_2} = \frac{U_{\rm m}}{\omega S n_2},\tag{7}$$

kde S je obsah průřezu kroužku

$$S = \frac{1}{2}(d_1 - d_2)v \,,$$

kde v je výška kroužku.

3 Měření

Nejprve byl sestaven obvod podle schématu na obrázku 2. Byl použit střídavý zdroj o frekvenci f = 50 Hz s nastavitelným napětím v rozsahu 0-250 V, které bylo posléze transformováno pomocí trafa na nižší, bezpečnější napětí do 6 V. Jako ampérmetr byl použit digitální multimetr METEX M3870D, jehož výrobce uvádí

pro námi použitý rozsah 4 A přesnost $\pm(2,0\% + 5 \text{dg})$ s rozlišením 1 mA. Nepřesnosti odporu 2,2 Ω , integrátoru, trafa i vstupní frekvence f = 50 Hz můžeme vůči nejistotě způsobené čtením z displaye osciloskopu bezpečně zanedbat (níže uvidíme, že tato nejistota bude poměrně vysoká).

Nejprve byly zapojeny postupně tři kroužky a citlivost y-ové osy osciloskopu byla nastavena na co největší citlivost tak, aby se na display stále vešla hysterézní křivka každého kroužku při plném rozvinutí podle doporučeného rozsahu proudů [1].

Pro každý kroužek jsme měřili v doporučeném rozsahu proudů [1] a provedli jsme alespoň deset měření. Při každém změření jsme zaznamenali hodnotu proudu (na ampérmetru), velikost napětí U_x ve voltech (k vyšší přesnosti nám pomohlo uzemnění *y*-ového vstupu), velikost napětí U_y (pomocí uzemnění *x*-ového vstupu) a napětí $2U_{\rm C}$. Protože hodnota $U_{\rm C}$ byla ve většině případů poměrně malá, odečítali jsme vždy dvojnásobek hodnoty $U_{\rm C}$ díky faktu, že křivka je symetrická. Toto hodnotu jsme odečetli tak, že jsme si křivku na displayi posunuli pouze ve směru osy *x* tak, aby procházela počátkem a odečetli jsme *x*-ovou souřadnici bodu, kde podruhé protínala osu *x*. Do tabulky byla zapisovaná tato hodnota dělena dvěmi, tedy $U_{\rm c}$.

3.1 Kalibrace

Ačkoliv jsme kalibraci provedli jako poslední, začneme s ní na začátku, protože následující výpočty budou vycházet z těchto kalibrovaných hodnot.

Obvod byl zapojen podle schématu na obrázku 3. Byl použit zdroj i transformátor popsaný výše. Jako voltmetr byl použit multimetr METEX M3870D s přesností $\pm(8,0\% + 3\text{dg})$ na použitém rozsahu (rozlišení 10 mV). Přesnost odporové dekády byla 0,1 % a její odpor byl nastaven na (999±1) Ω . Nepřesnost odporového normálu (odpor normálu je 1 Ω) můžeme vůči ostatním nepřesnostem zanedbat.

Po zapojení bylo na voltmetru naměřeno efektivní napětí

$$U_0 = (8,05 \pm 0,09) \,\mathrm{V}$$
.

Efektivní napětí na normálu tedy je podle (4)

$$U_{\text{eff}} = (8,05 \pm 0,09) \,\mathrm{mV}\,,$$

kde jsme pří výpočtu nejistoty zanedbali nepřesnost odporové dekády, protože je značně menší, než nepřesnost voltmetru (resp. multimetru). Při tomto zapojení ukazoval osciloskop na ose y hodnotu

$$U_{\rm y} = (7, 2 \pm 0, 2) V$$
.

Z toho tedy podle vztahu (5) můžeme dopočítat konstantu úměrnosti k, kde $\omega = 2\pi f = 100\pi s^{-1}$

$$k = (5,03 \pm 0,15) \cdot 10^{-6} \,\mathrm{s}$$

jejíž nejistota byla spočtena podle gaussova zákona šíření nejistot $[3]^1$.

3.2 Parametry kroužků

V tabulce 1 jsou uvedené parametry každého ze tří použitých kroužků. Nebyly u nich uvedeny nejistoty, proto bereme jako nejistotu polovinu poslední uvedené cifry.

×1 °

Tabuika 1: parametry krouzku										
kroužek	n_1	n_2	$\frac{d_1}{mm}$	$\frac{d_2}{mm}$	$\frac{v}{mm}$	$\frac{d}{mm}$	$\frac{S}{\mathrm{mm}^2}$			
			111111	111111	111111	111111				
Ι	50	6	$29{,}20\pm0{,}05$	$20{,}750\pm0{,}005$	$4{,}40\pm0{,}05$	$24{,}98\pm0{,}03$	$18{,}6\pm0{,}2$			
II	50	6	$30{,}650\pm0{,}005$	$21{,}80\pm0{,}05$	$4,\!350\pm0,\!005$	$26{,}23\pm0{,}03$	$19{,}2\pm0{,}1$			
III	300	6	$31,\!00 \pm 0,\!05$	$21{,}80\pm0{,}05$	$4{,}150\pm0{,}005$	$26{,}40\pm0{,}04$	$19{,}1\pm0{,}1$			

¹Nejistotu (úhlové) frekvence můžeme vůči nejistotě napětí bezpečně zanedbat $\sigma_k^2 = k \left(\frac{U_{\text{eff}}}{\sigma_{U_{\text{eff}}}} + \frac{U_y}{\sigma_{U_y}} \right)$

TT 1 11 1

Naměřené hodnoty napětí U_x , U_y , U_c na osciloskopu a proudu I na multimetru jsou uvedeny v tabulkách 2, 3 a 4. Tabulky rovnou obsahují i výpočet U_m podle (6), B_m podle (7), H_m dle (1) a H_c podle vztahu (3)? První sloupeček každé tabulky obsahuje popis tvaru křivky. Křivka vždy zaujímala jeden z tvarů na obrázku 1, až na několik přechodových případů (hlavně v případě přechodu mezi zaškrceným a normálním typem smyčky pro třetí kroužek), kdy nebylo snadné určit pouhým pohledem, o jaký typ se jedná.

Závislosti $B_{\rm m}$ na $H_{\rm m}$, respektive $H_{\rm c}$ na $H_{\rm m}$ jsou následně vyneseny v grafech 1 až 6. Naměřené hodnoty jsou proloženy hladkou křivkou, protože analytickou závislost neznáme a pravděpodobně by byla značně komplikovaná.

3.3 Kroužek I

Tabulka 2: Kroužek I									
tun	U_x	U_y	$U_{ m c}$	Ι	$U_{ m m}$	$B_{ m m}$	$H_{ m m}$	$H_{\rm c}$	
typ	V	V	V	$\overline{\mathrm{mA}}$	$\overline{\mathrm{mV}}$	T	$\overline{\mathbf{A}\cdot\mathbf{m}^{-1}}$	$\overline{\mathbf{A}\cdot\mathbf{m}^{-1}}$	
a)	0.2 ± 0.1	0.4 ± 0.2	0 ± 0.1	5 ± 3	0.6 ± 0.3	0.02 ± 0.01	3 ± 2	0	
b)	0.4 ± 0.1	1.2 ± 0.2	0.2 ± 0.1	14 ± 3	1.9 ± 0.3	0.05 ± 0.01	9 ± 2	1 ± 1	
	0.8 ± 0.1	2.2 ± 0.2	0.4 ± 0.1	25 ± 4	3.5 ± 0.3	0.10 ± 0.01	16 ± 2	3 ± 1	
	1.2 ± 0.1	3.6 ± 0.2	0.6 ± 0.1	40 ± 4	5.7 ± 0.4	0.16 ± 0.01	25 ± 2	4 ± 1	
	1.8 ± 0.1	4.4 ± 0.2	0.8 ± 0.1	55 ± 4	7.0 ± 0.4	0.20 ± 0.01	35 ± 3	6 ± 1	
	2.2 ± 0.1	5.2 ± 0.2	1.0 ± 0.1	70 ± 4	8.2 ± 0.4	0.23 ± 0.01	45 ± 3	9 ± 1	
C)	2.8 ± 0.1	5.6 ± 0.2	1.0 ± 0.1	90 ± 5	8.9 ± 0.4	0.25 ± 0.01	57 ± 3	10 ± 1	
	3.4 ± 0.1	6.0 ± 0.2	1.0 ± 0.1	110 ± 5	9.5 ± 0.4	0.27 ± 0.01	70 ± 3	12 ± 1	
	4.0 ± 0.1	6.0 ± 0.2	1.0 ± 0.1	130 ± 6	9.5 ± 0.4	0.27 ± 0.01	83 ± 4	14 ± 2	
	4.6 ± 0.1	6.0 ± 0.2	1.0 ± 0.1	150 ± 6	9.5 ± 0.4	0.27 ± 0.01	96 ± 4	16 ± 2	

² Nejistoty těchto čtyř veličin jsou vypočteny podle gaussova zákona šíření nejistot následujícími vztahy

$$\begin{split} \sigma_{U_{\rm m}}^2 &= U_{\rm m}^2 \left(\frac{\sigma_k^2}{k^2} + \frac{\sigma_{U_y}^2}{U_y^2} \right) \,, \\ \sigma_{B_{\rm m}}^2 &= B_{\rm m}^2 \left(\frac{\sigma_{U_{\rm m}}^2}{U_{\rm m}^2} + \frac{\sigma_S^2}{S^2} \right) \,, \\ \sigma_{H_{\rm m}}^2 &= H_{\rm m}^2 \left(\frac{\sigma_I^2}{I^2} + \frac{\sigma_d^2}{d^2} \right) \,, \\ \sigma_{H_{\rm c}}^2 &= H_{\rm c}^2 \left(\frac{\sigma_{H_{\rm m}}^2}{H_{\rm m}^2} + \frac{\sigma_{U_{\rm c}}^2}{U_{\rm c}^2} + \frac{\sigma_{U_x}^2}{U_x^2} \right) \end{split}$$

neuvažujeme nejistotu úhlové frekvence ω a proto se nedopouštíme chyby, když nejprve ve vztahu (6) touto veličinou násobíme a výsledek pak ve vztahu (7) dělíme. V tabulkách jsou uvedeny pouze zaokrouhlené hodnoty, podle jejich nejistot, ale ve skutečnosti bylo počítáno s přesnými čísly bez zaokrouhlování.

Strana 7 z 12

V grafu 1 je závislost koercitivní síly na $H_{\rm m}$ proložena lineární závislostí $H_{\rm c}(H_{\rm m}) = a_1 H_{\rm m} + b_1$, kde koeficienty vyšli fitem v programu Gnuplot (s uvážením jednotlivých x-ových i y-ových nejistot) jako

$$a_1 = 0.173 \pm 0.005$$
,
 $b_1 = (-0.1 \pm 0.2) \text{ A/m}$.

V grafu 2 je závislost proložena pouze hladkou křivkou (která i tak nekopíruje ideálně naměřené hodnoty, protože se uprostřed rozsahu mírně odchyluje do nižších hodnot), protože neznáme analytickou závislost těchto dvou veličin.

3.4 Kroužek II

Tabulka 3: Kroužek II									
twp	U_x	U_y	$U_{ m c}$	Ι	$U_{ m m}$	$B_{ m m}$	$H_{ m m}$	$H_{ m c}$	
tур	V	V	V	mA	mV	Т	${\rm A} \cdot {\rm m}^{-1}$	${\rm A} \cdot {\rm m}^{-1}$	
a)	0.4 ± 0.1	0.4 ± 0.2	0 ± 0.1	30 ± 4	0.6 ± 0.3	0.017 ± 0.009	18 ± 2	0	
	0.8 ± 0.1	0.8 ± 0.2	0 ± 0.1	50 ± 4	1.3 ± 0.3	0.035 ± 0.009	30 ± 2	0	
	1.2 ± 0.1	1.2 ± 0.2	0.2 ± 0.1	70 ± 4	1.9 ± 0.3	0.052 ± 0.009	42 ± 3	7 ± 4	
b)	1.4 ± 0.1	1.6 ± 0.2	0.2 ± 0.1	90 ± 5	2.5 ± 0.3	0.070 ± 0.009	55 ± 3	7 ± 3	
	1.8 ± 0.1	2.0 ± 0.2	0.4 ± 0.1	110 ± 5	3.2 ± 0.3	0.087 ± 0.009	67 ± 3	13 ± 3	
	2.0 ± 0.1	2.8 ± 0.2	0.6 ± 0.1	130 ± 6	4.4 ± 0.3	0.122 ± 0.009	79 ± 3	17 ± 3	
	2.4 ± 0.1	3.2 ± 0.2	0.8 ± 0.1	150 ± 6	5.1 ± 0.4	0.139 ± 0.010	91 ± 4	23 ± 3	
	2.6 ± 0.1	3.6 ± 0.2	1.0 ± 0.1	170 ± 6	5.7 ± 0.4	0.157 ± 0.010	103 ± 4	29 ± 3	
a)	3.0 ± 0.1	4.0 ± 0.2	1.0 ± 0.1	190 ± 7	6.3 ± 0.4	0.174 ± 0.010	115 ± 4	29 ± 3	
C)	3.2 ± 0.1	4.4 ± 0.2	1.2 ± 0.1	211 ± 7	7.0 ± 0.4	0.192 ± 0.011	128 ± 4	35 ± 3	
	3.6 ± 0.1	4.8 ± 0.2	1.4 ± 0.1	231 ± 8	7.6 ± 0.4	0.209 ± 0.011	140 ± 5	41 ± 3	
	3.8 ± 0.1	5.2 ± 0.2	1.6 ± 0.1	250 ± 8	8.2 ± 0.4	0.227 ± 0.011	152 ± 5	47 ± 4	

Strana 8 z 12

Graf 4: Závislost magnetické indukce na $H_{\rm m}$ - Kroužek II

Závislost v grafu 3 byla proložena stejným postupem jako v případě prvního kroužku (viz. výše) $H_{\rm c}(H_{\rm m}) =$ $= a_2 H_{\rm m} + b_2$

$$a_2 = 0.34 \pm 0.02$$
,
 $b_2 = (-9 \pm 1)$ A/m.

V grafu 4 je závislost proložena lineární funkcí $B_{\rm m}(H_{\rm m}) = \alpha H_{\rm m} + \beta$, koeficienty jsme spočítali fitem obdobně jako v předchozím případě

$$a_1 = (1,62 \pm 0,03) \cdot 10^{-3} \,\mathrm{T} \cdot \mathrm{m} \cdot \mathrm{A}^{-1},$$

 $b_1 = (-0,014 \pm 0,003) \,\mathrm{T}$

$\mathbf{3.5}$ Kroužek III

Tabulka 4: Kroužek III									
tun	U_x	U_y	$U_{ m c}$	Ι	$U_{ m m}$	$B_{ m m}$	$H_{ m m}$	$H_{ m c}$	
typ		V	V	$\overline{\mathrm{mA}}$	$\overline{\mathrm{mV}}$	Т	$\overline{\mathbf{A}\cdot\mathbf{m}^{-1}}$	$\overline{\mathbf{A}\cdot\mathbf{m}^{-1}}$	
	0.6 ± 0.1	0.4 ± 0.2	0 ± 0.1	180 ± 10	0.6 ± 0.3	0.018 ± 0.009	650 ± 20	0	
a)	1.2 ± 0.1	0.8 ± 0.2	0 ± 0.1	420 ± 10	1.3 ± 0.3	0.035 ± 0.009	1520 ± 40	0	
b)	1.6 ± 0.1	1.6 ± 0.2	0.4 ± 0.1	490 ± 10	2.5 ± 0.3	0.070 ± 0.009	1770 ± 50	440 ± 110	
	1.8 ± 0.1	2.4 ± 0.2	0.6 ± 0.1	540 ± 10	3.8 ± 0.3	0.105 ± 0.009	1950 ± 50	490 ± 90	
	2 ± 0.1	3.6 ± 0.2	0.8 ± 0.1	610 ± 20	5.7 ± 0.4	0.158 ± 0.010	2210 ± 60	490 ± 70	
\mathbf{c})	2.2 ± 0.1	4.4 ± 0.2	0.9 ± 0.1	670 ± 20	7.0 ± 0.4	0.193 ± 0.011	2420 ± 60	500 ± 60	
	2.4 ± 0.1	4.8 ± 0.2	0.9 ± 0.1	740 ± 20	7.6 ± 0.4	0.211 ± 0.011	2680 ± 60	500 ± 60	
	2.8 ± 0.1	5.2 ± 0.2	1.0 ± 0.1	870 ± 20	8.2 ± 0.4	0.228 ± 0.011	3150 ± 70	610 ± 70	
	3.2 ± 0.1	5.6 ± 0.2	1.0 ± 0.1	990 ± 20	8.9 ± 0.4	0.246 ± 0.012	3580 ± 80	640 ± 70	
d)	3.6 ± 0.1	6 ± 0.2	1.1 ± 0.1	1120 ± 30	9.5 ± 0.4	0.264 ± 0.012	4050 ± 90	740 ± 70	
	3.8 ± 0.1	6 ± 0.2	1.1 ± 0.1	1190 ± 30	9.5 ± 0.4	0.264 ± 0.012	4300 ± 100	790 ± 80	

Graf	5:	Závislost	koercitivní	sílv	na	H_{m}	_	Kro	užek	Ш
urar	ο.	20101000	ROCICIUIVIII	Siry	110	11 m		1110	uzon	TTT

Závislost v grafu 5 byla proložena stejným postupem jako v případě prvního a druhého kroužku (viz. výše) ale pouze na intervalu od 1700 A · m⁻¹ do 4500 A · m⁻¹. První dvě hodnoty byly z fitu vynechány, protože odpovídají lineární hysterézní smyčce, tedy napětí $U_{\rm C}$ bylo prakticky nulové (menší než nejmenší dílek stupnice osciloskopu). Z toho důvodu u těchto dvou bodů není uvedena ani chybová úsečka. $H_{\rm c}(H_{\rm m}) = a_3 H_{\rm m} + b_3$

$$a_3 = 0.12 \pm 0.01$$
,
 $b_3 = (220 \pm 31) \,\text{A/m}$.

V grafu 6 má závislost podivný tvar (tzn. těžko by se hledal analytický předpis funkce), proto byla proložena pouze hladkou křivkou.

4 Diskuze výsledků

Závislosti $H_{\rm C}$ na $H_{\rm m}$ (viz. grafy 1, 3 a 5) jsou pro všechny tři kroužky v daném rozsahu přibližně lineární, avšak pouze závislost pro první kroužek lze považovat za procházející počátkem, tedy se zanedbatelným absolutním členem.

Závislosti $B_{\rm m}$ na $H_{\rm m}$ (viz. grafy 1, 3 a 5) se pro všechny kroužky značně liší. Pro první kroužek je oblasti nižších elektrických intenzit $H_{\rm m}$ možné závislost považovat za přibližně lineární a pro hodně velké intenzity za konstantu, protože zde dochází k nasycení. Analytická závislost v přechodové oblasti nám však není známa. Pro druhý kroužek je závislost lineární na celém měřeném rozsahu a pro třetí kroužek vychází podivná závislost, která výrazněji roste pouze v intervalu od $300 \,\mathrm{A} \cdot \mathrm{m}^{-1}$ do $500 \,\mathrm{A} \cdot \mathrm{m}^{-1}$ a dále se růst zastavuje.

4.1 Nejistoty

Jednoznačně nejvyšší nejistotu do měření vnáší odečítání hodnot z displaye osciloskopu. To nám ale příliš nevadí, protože nám šlo o obecný charakter závislosti.

Vyšší přesnosti pro nízké proudy šlo dosáhnout například tím, kdybychm místo hodnot U_x a U_y odečítali jejich dvojásobky podobným způsobem jako jsme to dělali pro U_c . Zároveň bychom mohli měření rozdělit na více fází a sice, že pro menší proudy bychom nastavili vyšší přesnost *y*-ové osy osciloskopu. A po několika měřeních bychom citlivost upravili. V tom případě by ale bylo potřeba před každou změnou rozsahu provést kalibraci nebo si zaznamenávat i použitý rozsah *y*-ové osy a následně dopočítat koeficienty *k* pro jednotlivé rozsahy. To by však přesahovalo rámec požadavků této úlohy.

5 Závěr

Byly pozorovány všechny čtyři typy hysterézních smyček. V tabulkách 2 až 4 je uvedeno, na jakém rozsahu intenzit pole lze jednotlivé typy smyček pozorovat, avšak je to pouze orientační rozložení, protože v přechodových oblastech bylo obtížné identifikovat, o jaký typ smyčky se jedná.

Dále byla okalibrována aparatura (konkrétně vertikální osa osciloskopu) a změřena přibližná závislost indukce $B_{\rm m}$ na $H_{\rm m}$ (grafy 1, 3 a 5) a $H_{\rm C}$ na $H_{\rm m}$ (grafy 1, 3 a 5).

Pokud jsi dočetl moje praktikum až sem, gratuluji a řeš online.fyziklani.cz!

6 Seznam použité literatury

- [1] R. BAKULE, J. ŠTERNBERK. Fyzikální praktikum II. Praha: SPN, 1989.
- [2] B. SEDLÁK, I. ŠTOLL. Elektřina a magnetismus. Praha: Academia, 2002
- [3] B. VYBÍRAL. Zpracování dat fyzikálních měření. Hradec Králové: MAFY, 2002
- [4] BROŽ, J. a KOL. Základy fyzikálních měření I. 1. vyd. Praha: SPN, 1983, 669 s.