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An investigation on magnon transport is done on 100nm thick YIG with platinum wires,

∼ 7nm thick. A comparison is done with 200nm thick YIG for measurements of which

the result is already known [1] and the Anomalous Hall Effect for magnons itself is being

investigated. The SMR of 100nm thick YIG gives the same magnitude and sign as for

200nm YIG. The local SSE voltage of the second harmonic shows a same sign and mag-

nitude when compared with 200nm YIG. The in plane measurements show the same sign

and the first harmonic in plane measurements have a similar magnitude when compared

to 200nm thick YIG. The magnitude of the second harmonic in plane measurements is

however twice as small. The out of plane measurements show that one of the signals is

an artifact from the measurement setup due to the SW model. The hypotheses drawn

for the AHE for magnons expect a 2-fold and 3-fold signal should be seen in the second

harmonic and first harmonic respectively for out of plane measurements. These signals

are however not found, which could be due to the reason that the AHE for magnons is

a bulk effect or that the device geometry is not suitable.
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Chapter 1

Introduction

1.1 Technological Singularity

In the last few decades amazing progress has been made on advancing the technology

of man. One quintessential example is Moore´s Law which states that the amount of

transistors on an integrated circuit will double every two years. This trend has been

observed over the last few decades, but one might imagine that it´s eventually not

possible to go any further. That there must be some limit after which no transistor can

be made anymore. This limit could then be called a technological singularity, this limit

has been noted by John von Neumann in the 1950s, ¨An essential singularity in the

history of the race, on the ever accelerating progress of technology, beyond which human

affairs, as we know them, could not continue¨[2].

With the advancement of spin-integrated electronics, or spintronics, it´s been possible

to keep making the transistors smaller by making use of the electron spin, a result from

quantum mechanics. This translates to the fact that it is still possible to match the

description of Moore´s Law. However, to effectively develop integrated circuits based

on spintronics is important to know all the mechanism that are present when using this

technology. And that is where this bachelor research enters the picture.

1.2 Magnons

Now what is this magnon and why is it studied, besides shear interest of finding out all

there is to know. To explain that we start off with a ferromagnet. When this ferromagnet

is in its ground state, the spins are all pointing in the same direction, see figure 1.1(a).

When some energy is added to this ferromagnet, it will go into an excited state, where

1
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Figure 1.1: (a) A ferromagnet in its ground state, all the spins are aligned in the
same direction. (b) A ferromagnet in a high energy excited state, one spin is flipped
which is energetically very inefficient, very high domain boundary energy will be present
between the parallel and anti-parallel spins. (c) A ferromagnet in a low energy excited
state, all the spins make a precession movement which is brings the ferromagnet out
of the ground state. The neighbouring spins are coupled by the Heisenberg interaction

and will follow the precession movement with an added phase [3].

Figure 1.2: (a) A depiction of a spin wave, where each neighbouring spin has a slight
phase change. (b) The topview of these spins, where a line is drawn through the ends

of each spin vector, this results in a periodic wave, which is called a magnon [3].

one spin is anti-parallel. This is however energetically inefficient and it requires high

energy to make this excitation, see figure 1.1(b). There is a third option which requires

low energy to excite the ferromagnet, see figure 1.1(c). In this state all the spins will

make a precessing movement, where the neighbour of each spin will follow the precession

with a slight phase difference. The precession results in the spin vector being slightly

smaller in the direction it first was, thus collectively one spin is still anti-parallel. Now

if a line is drawn through the end of all these spin vectors, as in figure 1.2(b), it will end

up as a periodic wave. This wave is called a magnon, a wave of spin-excitation.

1.3 Anomalous Hall Effect

The Hall effect was discovered by E.H. Hall in 1879 [4]. This Hall effect is where a mag-

netic field perpendicular to the propagation direction of a current causes an orthogonal

electromotive force, which is called the Lorentz force. Two years later E.H. Hall found

that the electromotive force was ten times larger for ferromagnetic iron [5] than in non-

magnetic conductors. This effect is called the Anomalous Hall Effect and will the main

topic of this thesis.
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1.4 Motivation and Outline

Using magnons instead of electrons for electronic devices can come with many benefits.

For example, these magnons can have very high frequencies, ranging from a few dozen

GHz to a few THz. If these magnons could be implemented into the integrated circuits

it would be possible to make computing devices with a clockrate much higher than is

used in current day electronic devices, which have a clockrate on the order of GHz, since

the clockrate is directly related to the frequency of the magnon [6]. Another benefit

of using magnons is that it allows wavebased computing, where vector operations are

used instead of scalar variable operations, this results in less logic operations necessary

to compute the same thing. Furthermore magnons allow operations with wavelengths

below 10nm and miniaturization of the devices goes along with an increase of computing

speed. Even more applications besides these are being worked on [6].

To make integrated circuits based on magnons it is of course important to know as much

as possible about the behaviour of the magnon, otherwise unwanted potential differences

or leakage current could appear in a fabricated device, e.g. a travelling magnon gains

some transverse velocity due to some unknown Hall effect. Therefore this research will be

on the Anomalous Hall Effect (AHE) for magnons. By getting a better understanding of

this mechanism the total understanding of the magnon grows, which eases the application

of magnons in current day devices. This thesis consists of the following chapters, each

provided with a short description:

• Chapter 2: Theory - This chapter will start with explaining the magnon itself

in more detail and the different ways these magnons can be excited. It will give

some information about Yttrium Iron Garnet (YIG), which is the material through

which the magnon transport will find place. The Spin Hall Effect will be explained,

which is a method of exciting the magnons, and the Inverse Spin Hall Effect and

Spin pumping are explained which are a method of detecting the magnons. The

Anomalous Hall Effect will be explained in detail, where each contribution to the

AHE for electrons will be discussed. [Berry´s phase and curvature will be explained

shortly, together with the Dzyaloshinskii Moriya Interaction. These two can be used

to predict the AHE for magnons]. Then a few phenomenological hypothesis for the

AHE for magnons are drawn by making a comparison to the AHE for electrons.

Furthermore a transport mechanisms of the magnon, namely the Spin Seebeck

Effect, will be explained. Finally the Stoner Wohlfarth Model will be discussed,

because the measurements rely on rotating the magnetization of the YIG from in

plane to out of plane by rotating a magnetic field. The magnetization will behave

different due to the anisotropy of the film among other things.
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• Chapter 3: Experimental Methods - The fabrication of the device, that is, the

cleaning, the Electron Beam Lithography steps, the development and the deposition

of Platinum wires and Titanium/Gold contacts will be explained. The explanations

will be more general, to sketch a good overview of how the device is created. All the

exact steps taken are listed in Appendix A. Furthermore, the deposition techniques

sputtering and electron beam evaporation will be explained, how they work and

why one or the other is used. Finally the measurement setup and the way how a

signal is sent through and the technique how to measure this signal is explained.

• Chapter 4: Results and Discussion - First a comparison will be drawn between

measurements from 100nm thick YIG with previously reported measurements done

on 200nm thick YIG. The Spin Magnetoresistance, local Spin Seebeck voltage of

the second harmonic, magnetization of the YIG and the non-local in plane mea-

surements will all be compared to better understand how the thinner YIG affects

these mechanisms and ultimately how this could have an influence on the AHE

for magnons. Then the out of plane measurements follow, where the Stoner Wohl-

farth model will be applied and discussed and finally the resulting measurements

are compared with the hypotheses earlier made about the AHE for magnons in

chapter 2.

• Chapter 5: Conclusion - All the measurements taken will be concluded. Any

reasons for the results found will be reported such as the reason why the AHE for

magnons was not observed.



Chapter 2

Theory

The theory below will first familiarize the reader with the concept of magnons, how

they look like and how they are excited. Then the material Yttrium Iron Garnet (YIG),

which will be the material through which the magnons are transported, will be explained

along with the properties of the YIG which make it such a good material to use for the

magnon transport. Then a section about the (Inverse) Spin Hall Effect follows which

explains how a spin-polarized current is generated at the interface between an injector

and the YIG and how a current is generated from a spin imbalance in a wire. Also the

sign of this (I)SHE, which is a topic of many discussions, will be explained. Thereafter

spin pumping is explained, the process of how a magnon gets absorbed and creates a

signal in the detector. Then the Anomalous Hall Effect (AHE) for electrons will be

explained in detail including the three contributions that exist for the AHE for electrons.

After this a section follows about the Anomalous Hall Effect for magnons, where a few

phenomenological hyptheses are made in comparison with the AHE for electrons. Then

the Spin Seebeck Effect is explained, which is a transport mechanism of the magnons.

Finally the Stoner Wholfarth model will be explained, since the magnetization of the

YIG will not always be parallel to a rotating magnetic field due to anisotropy among

other things.

2.1 Magnons

The magnon dates back to 1930, when F. Bloch studied ferromagnetic behaviour at low

temperatures and in specific under what conditions ferromagnetism would be possible

at all [7]. He studied a ferromagnet at absolute temperature which, according to the

Heisenberg theory, should have all the magnetic moments pointing in the same direction

to achieve the lowest energy state, the ground state. If the temperature would then

5
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increase the magnetic moments will start to deviate and the net magnetization will be

reduced. If the state of magnetization at zero temperature would be considered as a

vacuum state, the deviations at higher temperature can be considered as some gas of

quasi-particles. It is these particles that are called magnons and in this case it would be

a thermally excited magnon.

The above description gives a phenomenological explanation of the magnon, however

nowadays the magnon can be defined much more exact. As follows from the introduction,

section 1.2, the magnon is a quantized spin-wave. To explain in depth how this spin-wave

looks like we starts with a ferromagnet in its ground state. The magnetization of this

ferromagnet can be described by the Landau-Lifshitz-Gilbert equation

dmmm

dt
= −γmmm×Heff + αmmm× dmmm

dt
(2.1)

where mmm is the magnetization vector, γ is the gyromagnetic ratio, Heff is the effective

magnetic field including the external, demagnetization and crystal anisotropy contribu-

tions and α is the damping factor, a dimensionless constant [8]. Now the ground state

of a ferromagnetic material has all the spins aligned in the same direction from a clas-

sical view, as seen in figure 1.1(a). Now the nearest neighbour spin is coupled by the

Heisenberg interaction [3],

U = −2J

N∑
p=1

SSSp · SSSp+1 (2.2)

where J is the exchange integral and SSSp and SSSp+1 is spin p and its nearest neighbour. An

excitation of this ferromagnet can be seen as one spin which has an opposite direction

as in figure 1.1(b). However this is an excitation of high energy as can be seen from

equation 2.2. An excitation of lower energy can also be formed by sharing the antiparallel

spin over all the spins. These spins will make a precessing motion, as can be seen

from figure 1.1(c) and the first term on the right-hand side of equation 2.1. Following

the Heisenberg interaction, equation 2.2 the neighbouring spin of a precessing spin will

follow the precession motion with an added phase. Now a line can be drawn through

the end of the spin vector of each spin and its nearest neighbours and a wave can be

seen. This wave, an excitation of spin precession motion, is called the magnon. These

magnons are oscillations in the relative orientation of spins on a lattice. Phonons, which

are oscillations in the relative position of the atoms on a lattice are analogous to the

magnons [3]. Because of this analogy magnons can react with phonons, which is the only

interaction for magnons in the ferrimagnetic insulator YIG, which is the material used

for magnon transport. At distances shorter than the magnon spin diffusion length the

diffusive transport caused by scattering with phonons is dominating [1]. The magnon
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spin diffusion length can be described as follows

λ =
√
Dτ (2.3)

where λ is the magnon spin diffusion length in YIG, D is the magnon diffusion constant

and τ the magnon relaxation time, which are both material properties. The magnon

relaxation is dominating for large distances [1].

2.1.1 Magnon Excitation

There are two types of magnons that can be excited. The first is by the exchange

interaction and the second by dipole-dipole interaction. The difference between these

two magnons lies in their frequency, > 1THz and < 100GHz, respectively [6]. The

magnons that are discussed in this thesis are the exchange interaction magnons. These

exchange magnons are excited by two different ways. Both are excited by sending an

AC current through a platinum strip on top of YIG. The first kind of magnons are

excited by a polarized spin current at the Pt|YIG interface. This spin polarized current

is generated on accord of the Spin Hall Effect (SHE), which will be explained in section

2.2.1. Then by virtue of the exchange interaction, which will also be explained later

on, the conduction electrons transfer their angular momentum to the YIG, exciting a

magnon and flipping the spin polarization direction [1]. The second method is by ways

of Joule heating. The current going through the Pt strip will heat the platinum, thus

introducing thermal energy to the YIG. This heating goes as follows:

H ∝ I2 · R · t (2.4)

where H is the heating, I the current going through the wire, R the resistance of the

wire and t the time. The thermal energy will add to the ground state, thus exciting the

YIG. This excitation will generate magnon spin currents, which is similar as described

in section 2.1. These two magnons can be differentiated from each other by using lock-in

measurement techniques and will be addressed as first harmonic and second harmonic,

respectively.

2.2 Yttrium Iron Garnet

Yttrium Iron Garnet (Y3Fe5O12)(YIG), see figure 2.1 has been a very important material

in research on the physics of magnets [10]. YIG is a ferrimagnetic electrical insulator, with

a Curie temperature of TC = 560K, which makes experimenting at room temperature
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Figure 2.1: Crystal lattice structure of YIG where the Yttrium ion is shown with
respect to two Fe3+ ions, one on a tetrahedral site and the other on an octahedral site

[9].

possible. YIG also has a very low Gilbert damping, which is a material property that

governs how many rotations a magnetization precession makes before going back to the

ground state. Furthermore YIG can be grown with very little defects, which could scatter

the magnons, because of the small lattice mismatching of the substrate it is grown on,

Gadolinium Gallium Garnet (Gd3Ga5O12, GGG). The crystal growth is so well perfected

that its acoustical damping is lower than that of quartz [10].

The magnetic moment of the YIG is due to the Fe3+ ions in the crystal. Three Fe3+

ions are located on tetrahedral sites and two Fe3+ ions are located on octahedral sites,

such as the ones shown in figure 2.1. Through the oxygen ions of the YIG each pair of

Fe3+ ions on the same site is anti-ferromagnetically coupled. This leaves one Fe3+ ion

on the tetrahedral site which is not coupled, thus resulting in a net magnetic moment

[11].

2.2.1 (Inverse) Spin Hall Effect

The magnon excited by exchange interaction, section 2.1.1, will be excited due to a spin-

polarization current at the wire YIG interface. This spin-polarized current is generated

by the Spin Hall Effect (SHE). Then by exchange interaction the spin will transfer its

angular momentum to the YIG where it excites a magnon and flips the spin-polarization

of the electron. The magnon detection will be due to a spin-polarized current, excited by

magnons transferring their angular momentum, thus flipping the spin of an electron, in

the detector strip. This spin-polarized current will generate a voltage due to the Inverse

Spin Hall Effect (ISHE). The transfer of the angular momentum will be explained in

section 2.3
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Figure 2.2: (a) Depiction of the Hall effect, a magnetic field is placed perpendicular to
the current direction, this causes the electrons to experience a Lorentz force orthogonal
to the current direction and the magnetic field direction, which creates a potential
difference transverse to the current direction. (b) Depiction of the Spin Hall Effect,
the same magnetic field is applied to a material with spinorbit coupling, this causes
the spins to scatter asymmetrically in the transverse direction and results in a spin

potential in the transverse direction [12]

Now consider a material where there is no net magnetization, a material with strong

spin-orbit coupling, such as the paramagnetic metal Platinum (Pt). Due to the skew-

scattering contribution of the AHE for electrons, as will be explained in section ??, the

electrons of opposite spin and magnetic moment will deflect to opposite directions [12]

as can be seen in figure 2.2. This was proposed and proven by Hirsch [12].

This asymmetric scattering can be understood to originate from spin-orbit interaction.

First consider an unpolarized beam of electrons incident on a spinless scatterer, the

potential of this beam being

V = Vc(r) + Vs(r)σ · L (2.5)

where σ and L are the electron spin and angular momentum respectively, Vs is the usual

spin-orbit scattering potential, r is the particle coordinate and Vc is the well depth for

forward scattering [13]. The scattered beam will have a spin polarization vector

Pf =
fg∗ + f∗g

| f |2 + | g |2
n̂ (2.6)

with n̂ the unit vector perpendicular to the scattering plane, in direction ki × kf , where
ki and kf are the initial and final scattered wave vectors respectively. f and g are

the spin-independent and spin-dependent parts of the scattering amplitude respectively.

Particles that scatter to the left and right of the scatterer will have an opposite sign due to
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Material θSH

Ta -0.12
Pt 0.067± 0.006

Au(Pt) 0.12± 0.04
Au 0.016± 0.003
Mo −0.0023± 0.0005

Table 2.1: θSH for several materials, where the sign of the spin Hall angles is chosen
by convention [14]&[15]. The direction of the SHE can then be described according to

the right-hand-rule as proposed in section 2.2.1.2

n̂ being opposite. This results in an asymmetry of the spin polarization after scattering.

This asymmetry is a direct consequence of the Spin Hall Effect (SHE). Furthermore a

characteristic ratio called the Spin Hall angle can be defined where

θSH ∝
Js
Jc

(2.7)

where Js is the transverse spin current density and Jc the applied charge current density.

This relation is a measure of how large the spin polarized current will be, the larger

θSH , the bigger the spin polarized current. For materials such as platinum, tantalum

and platinum-doped gold and other metals, the θSH is found in table 2.1. The Spin Hall

angles for tantalum and platinum are quite large in comparison with other materials.

2.2.1.1 Inverse Spin Hall Effect

The Inverse Spin Hall Effect (ISHE) is the reciprocal of the SHE, where it starts off

with a spin current in a metal with no net magnetization, for example the paramagnetic

material platinum. This spin-polarized asymmetry is caused by the spin pumping of the

magnons into this metal, where all the spin is dependent on the magnetization direction

of the applied magnetic field, see section 2.3. It is expected that the spin-orbit interaction

responsible for the SHE can also be responsible for the reverse process to happen [16].

The spin-orbit interaction causes an electric field transverse to the spin current (JJJs) and

spin-polarization factor of the spin current (σ), see figure 2.3, so that

EEEISHE ∝ JJJs × σσσ (2.8)

The dc voltage VVV ISHE is due to the ISHE induced by spin pumping, so that

VVV ISHE ∝ JJJscosθm (2.9)
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Figure 2.3: Schematic illustration of the spin pumping. MMM(t) is the magnetization of
the ferromagnet. JJJs and σσσ are the direction and polarization vector of the spin current

respectively [16]

where θm is the angle of the magnetization with the sample plane where the magnetiza-

tion is parallel to the spin-polarization direction at 0 degrees [16]. Only the component

transverse to this direction will be measured, thus a cos(θm) magnitude is expected.

2.2.1.2 Sign of the (Inverse) Spin Hall Effect

The sign of the (I)SHE has been a subject of controversy, since defining a sign is subject

to the conventions used for the Spin Hall angle, which were not always defined the same

way. The sign of an electron (−e) is negative by convention for example. Schreier et al.

[17] suggests that the (I)SHE for materials with positive spin Hall angle, such as Pt,

can be described using a right-hand-rule. This right-hand-rule is applied as follows, see

figure 2.4. With the forefinger point into the direction the electron is moving, which

is the direction of the spin pumping in case of the measurements done in this thesis,

which will be explained in chapter 4. With the thumb point in the direction of the spin-

polarization of the electron. Now the electron will deflect into the direction given by the

middle finger.

2.3 Spin Pumping

The magnetization of a ferromagnetic material makes a precessing movement around

the direction of an applied magnetic field, which can be seen from the first term on the

right-hand side of equation 2.1. When a ferromagnetic material is in contact with a

normal metal this precessing movement is damped and transferred to the normal metal,

this process is called spin pumping [8].
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Figure 2.4: Right hand rule to determine the direction of the SHE for positive spin
Hall angle. The three vectors are orthogonal to each other and if the direction of two
vectors are known, the direction of the third can be determined by using the above

mnemonic [18].

The precession of the magnetization is caused by the torque of the applied magnetic

field, HHHeff, on the localized magnetic momentum, mmm, where

τ ∝ m×Heff (2.10)

where τ is the torque. This torque can be seen as a physical equivalent of a volume

injection of a spin current. Normally the precession of a spin dissipites, where the spin

will return to its ground state after making a certain number of turns, this dissipation is

called the Gilbert damping and is a material property. If the spin current can exert some

torque on the magnetization results in an increase or decrease of the precession angle,

the inverse would be that the changing angle of precession can excite a spin current by

using the torque. This is what happens when a precession in a ferromagnetic material

can leak into a normal metal. This damping of the torque by exciting a spin current is

then called the enhanced Gilbert damping [8].

The precessing magnetization is a source of non-equilibrium spin accumulation where the

spin-polarization directions are all dependent on the magnetic moment [8]. The magnetic

moment of of an atom can be given as follows

µµµ =
−e
2m
| lll | (2.11)

where −e is the total charge of the atom and l is the angular momentum of the atom.

This magnetic moment will accumulate spins which have the following magnetic moment

µµµs =
−e
2m

gssss (2.12)
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where gs is the g-value of the spin, which is approximately 2 and s is the angular mo-

mentum of the spin. Aligning the magnetic momenta of the spins will be at the the

cost of the magnetic momentum of the atom and therefore at the cost of the angular

momentum of the atom. From equation 2.12 it follows that the magnetic moment and

spin-polarization direction are antiparallel to each other. These spins then dissipates in

the normal metal by spin-flip processes as a spin current.

2.4 Anomalous Hall Effect

In 1879 E. H. Hall reported about the effect of out of plane magnetic fields on electric

currents where he discovered that there is an electromotive force working transverse to

the current direction [4]. This later became known as the Hall Effect. Two years later in

1881 E. H. Hall reported that an electromotive force, larger than observed for the Hall

effect, was observed for a ferromagnetic material [5]. This second discovery is now know

as the Anomalous Hall Effect (AHE).

The Hall effect for electrons is normally driven by a Lorentz force, but for charge-free

particles, like photons, phonons and magnons, there is no Lorentz force to drive any

Hall effect. However, in a ferromagnetic material, the Hall effect is proportional to the

magnetization and can be driven by the relativistic spin orbit interaction [19]. This effect

is called the Anomalous Hall Effect (AHE). This AHE has been theoretically proven and

experimentally observed for photons and phonons, [20] & [21]. To understand the AHE

for electrons it is necessary to understand what is a Berry phase and Berry curvature.

Then the AHE for electrons and mainly its mechanisms can be discussed. Thereafter a

few phenomenological hypotheses are drawn for the AHE for magnons where a similarity

will be drawn to the AHE for electrons.

2.4.1 Berry´s Phase & Berry Curvature

To explain how the Hamiltonian of a system changes under an adiabatic process an

example taken from Griffiths and Harris [22] will be started with. Begin with a pendulum

and start swinging it in one direction while on the north pole of the earth, see figure

2.5. Now if this pendulum is transported adiabatically towards Amsterdam in a straight

longitudinal line, then transported toward the USA across a latitudinal line and then

returned to the north pole again along a longitudinal line. Arriving at the north pole it

can be observed that the pendulum is not swinging in the direction it started with but

it has gained a phase. This same concept can be applied to the Hamiltonian of a system

and the added phase is called Berry´s phase.
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Figure 2.5: Adiabatic path of a pendulum across earth. The pendulum gains an angle
Θ [22]

Previously Griffiths and Harris [22] showed that a particle in the nth eigenstate of H(0),

under adiabatic conditions, stays in the nth eigenstate of H(t) picking up only a time-

dependent phase factor. Specifically, the wave-function of such a particle can be given

as

Ψn(t) = ei[θn(t)+γn(t)]n(t) (2.13)

where θn(t), the dynamic phase, is described as

θn(t) ≡ − 1

~

t∫
0

En(t′)dt′ (2.14)

and γn(t), the geometrical phase, is described as

γn(t) ≡ i
t∫

0

〈n(t′) | ∂
∂t′

n(t′)〉dt′ (2.15)

Now the wave-vector of this particle is time-dependent, since there is some parameter,

RRR(t), in the Hamiltonian which is changing with time. Now the following can be written

∂n(RRR)

∂t
=
∂n(RRR)

∂RRR

dRRR

dt
(2.16)
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and with this equation 2.15 can be rewritten as

γn(t) = i
t∫

0

〈n(RRR) | ∂n(RRR)

∂RRR
〉dR
RR

dt′
dt′

= i

RRRf∫
RRRi

〈n(RRR) | ∂n(RRR)

∂RRR
〉 · dRRR

γn(C) = i
∮
〈n(RRR) | ∇RRRn(RRR)〉 · dRRR

(2.17)

whereRRRi &RRRf are the initial and final values ofRRR(t). The last equation describes the net

geometric phase change after time of a Hamiltonian returning to its original form. This

geometric phase change is known as Berry´s phase [23], which is a line integral around

a closed loop (C) in parameter-space. Evaluating | ∇RRRn(RRR)〉 requires a locally single

valued basis for | n(RRR)〉 which can be difficult to work with. To avoid this Berry [23]

transforms equation 2.17 using Stokes´ Theorem to a surface integral whose boundary

is C instead of a phase change along C

γn(C) = −Im
∫ ∫

C
dSSS · ∇ × 〈n | ∇n〉

= −Im
∫ ∫

C
dSSS · 〈∇n | × | ∇n〉

= −Im
∫ ∫

C
dSSS ·

∑
n′ 6=n
〈∇n | n′〉 × 〈n′ | ∇n〉

(2.18)

where dSSS denotes an area element in R space. The off-diagonal elements are given as

〈n′ | ∇n〉 = 〈n′ | ∇Ĥ | n〉/(En − Em), n′ 6= n (2.19)

Taking this into account γn can be defined as

γn(C) = −
∫ ∫

C
dSSS · VVV n(RRR) (2.20)

where VVV n is the term for the Berry curvature and is given as

VVV n(RRR) = Im
∑
n′ 6=n

〈n(RRR) | ∇RRRĤ(RRR) | n′(RRR)〉 × 〈n′(RRR) | ∇RRRĤ(RRR) | n(RRR)〉
(Em(RRR)− En(RRR))2

(2.21)

This Berry curvature is the curl from the vector, as can be seen from 2.21, of the travelling

particle or system. So by knowing the trajectory of the particle or system it is possible

to calculate the geometrical phase change.
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Figure 2.6: The three contributions to the Anomalous Hall Effect for electrons [24]

2.4.2 The Anomalous Hall Effect for electrons

The Anomalous Hall Effect (AHE) for electrons has three contributions, the intrinsic

deflection, side jumps and skew scattering [24]. The total AHE due to these three

contributions can be written as

σAHxy = σAH−intxy + σAH−skewxy + σAH−sjxy (2.22)

where each σ is the corresponding contribution. The xy component of the contribution

suggests that the conductivity in the transverse direction to the current direction is of

interest, since this is the direction of any Hall effects. The applied magnetic field in this

case would be in the z-direction and the current in the x-direction. The three components

can be seen in figure 2.6

2.4.2.1 Intrinsic Contribution to σxy

The easiest to evaluate of these three contributions is the intrinsic contribution, see

figure 2.6(a). The intrinsic contribution is only dependent on the band conductivity of

a perfect crystal. It can be directly derived from Kubo´s formula for the Quantum Hall
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conductivity [25], which goes as follows

σH =
ie2

A0~
∑

εα<EF

∑
εβ>EF

( ∂Ĥ∂kkk1 )αβ( ∂Ĥ∂kkk2 )βα)− ( ∂Ĥ∂kkk2 )αβ)( ∂Ĥ∂kkk1 )βα)

(εα − εβ)2
(2.23)

where A0 is the area of the system, εα and εβ are eigenvalues of the Hamiltonian H, kkk1
and kkk2 are two dependent variables of the Hamiltonian. When the eigenstates | n,kkk〉
and eigenvalues εn(kkk) of a Bloch Hamiltonian are given, then the intrinsic contribution

to the AHE can be written as

σAH−intij = e2~
∑
n6=n′

∫
dkkk

(2πd)
[f(εn(kkk))− f(εn′(kkk))]

× Im
〈n,kkk | vi(kkk) | n′, kkk〉〈n′, kkk | vj(kkk) | n,kkk〉

[εn(kkk)− εn′(kkk)]2

(2.24)

where the Hamiltonian is only dependent on kkk for the periodic part of the Bloch function.

The velocity in equation 2.24 is defined by

vvv(kkk) =
1

i~
[rrr,H(kkk)] =

1

~
∇kkkH(kkk) (2.25)

The phenomenological description of the intrinsic contribution can be given as follows.

The intrinsic contribution is dependent on the periodic potential of the perfect crystal

lattice, which are the Bloch states, so the contribution is directly linked to the topological

properties of the material. To be more specific the contribution is proportional to the

integral of the Berry phases over the Fermi-surface segments [26]. Using equation 2.19

it is possible to rewrite equation 2.24 to

σAH−intij = −εijl
e2

~
∑
n

∫
dkkk

(2π)d
f(εn(kkk))bln(kkk) (2.26)

where εijl is the antisymmetric tensor and bn(kkk) is the Berry curvature

bn(kkk) = ∇kkk × an(kkk) (2.27)

where an(kkk) is the Berry-phase connection, an(kkk) = i〈n,kkk | ∇kkk | n,kkk〉, which correspond

to the states {| n,kkk〉}. This Berry connection is a geometric vector potential, the vector

being the travelled path.

The intrinsic contribution to the AHE only depends on topological factors, which makes

this contribution easy to evaluate accurately for electrons transported through a ferro-

magnetic material. For many ferromagnetic materials with strong spin-orbit coupling,

this intrinsic contribution dominates the AHE [24].
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2.4.2.2 Skew-scattering contribution to σxy

The skew-scattering contribution to the AHE is simply proportional to the Bloch state

transport lifetime, see figure 2.6(c). Therefore in a more perfect crystal lattice the skew-

scattering contribution is dominating the AHE. This contribution is the only contribution

which can be completely described according to the Boltzmann transport theory

∂f

∂t
+ vvv · gradrrrf + α · gradvvvf =

∂f

∂t coll
(2.28)

where f is the classical distribution function in the six-dimensional space of Cartesian

coordinates rrr and velocity vvv, α is the acceleration dvvv
dt and ∂f

∂t coll is the collision term [3].

This equation describes the probability of a number of particles in a volume element, with

a certain velocity. If this volume element is followed along a flow-line the distribution

will be conserved. Furthermore in this volume element particles can accelerate away

from each other or can collide with each other or travel unaffected [3].

The semi-classical Boltzmann transport theory states that the transition probability

Wn→m is identical to the transition probability Wm→n. However, in a microscopic sense

this balance does not always hold [24]. For a material with spin-orbit coupling both the

Hamiltonian of the perfect crystal lattice and the disorder Hamiltonian can have different

transition probabilities when travelling in opposite directions. When these transition

rates are evaluated the asymmetric chiral contribution arises as a third order process

in the disorder scattering [24], because at that point the detailed balance of the semi-

classical Boltzmann theory will fail, which will be present in the perturbation introducing

the transition. In simplified models this asymmetric chiral contribution to the transition

probability can be written as

WA
kkkkkk′ = −τ−1A kkk × kkk′ ·MMM s (2.29)

where WA
kkkkkk′ is the scattering probability from the incident momentum, kkk, to kkk′, τ is

the transport lifetime and MMM s is the magnetization Inserting this contribution in the

Boltzmann equation will lead to Hall resistivity being proportional to the longitudinal

resistivity

ρskewH = σskewH ρ2 ∝ ρ (2.30)

where ρskewH is the resistivity and σskewH the conductivity due to the skew-scattering

contribution and ρ is the longitudinal resistivity.

The ability to calculate the skew-scattering contribution is limited however, since any

defects in the crystal lattice have no way of being defined periodically. These defects
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are mostly random and thus is it only possible to give proportions instead of a distinct

magnitude.

2.4.2.3 Side-jump contribution to σxy

The side-jump contribution is very similar to the intrinsic contribution, see figure 2.6(b)

and can be described as follows: When a Gaussian wave packet encounters a spherical

defect with spin-orbit interaction it will scatter, where the wave-vector kkk of the wave

packet will experience a displacement transversely to kkk, this displacement is then called

a side-jump. This contribution lies outside the bounds of the Boltzmann transport

theory and no extrinsic parameters apply to this scattering. Therefore the side-jump

contribution is of same order as the intrinsic contribution.

This side-jump contribution however has been very difficult to define and practically

impossible to predict [24]. Therefore it is an accepted practice to first evaluate the

intrinsic contribution of the AHE according to the intrinsic contribution as described

in section 2.4.2.1. If the contribution is independent on σxx and in agreement with the

intrinsic contribution, then there is no side-jump contribution. Any deviations however

are identified with the side-jump contribution.

2.4.2.4 Dependence of the contribution on the material conductivity

These three contributions have a different regime of conductivity where they dominate.

The first of these regimes is the High conductivity regime. In this regime the conductivity

σxx > 0.5× 106 (Ω cm)−1 and the skew-scattering component of the AHE is dominating,

in this regime our Pt injector and detector strips are located, since σPtxx = 9.52 ×
106 (Ω cm)−1, therefore the component of the AHE for electrons contributing to the

(I)SHE will be due to the skew-scattering of the electrons [12]. The second regime is

the Good metal regime. In this regime the magnitude of σxy is independent on σxx,

which lies in the range σxx ∼ 104− 106 (Ω cm)−1 [27]. This relation suggests that in this

regime the scattering-independent mechanisms dominate, so the intrinsic and side jump

contributions. None of the materials that are used however are within this regime. The

last regime is the Bad-metal-hopping regime. In this regime, where σxx < 104 (Ω cm)−1,

σxy scales faster than linear with σxx as is reported by Nagaosa et al. [24]. Also in this

regime ρxx is dependent on the temperature. From these observations it is not clear if

there is a component of the AHE which dominates, also there is no theory which predicts

the linear scaling in this regime [24]. Also no materials discussed will be in this regime as

the YIG is electrical insulation and the magnon transport through the YIG may behave

very different to the electrons in this regime.
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Figure 2.7: From [19]. (A) A pyrochlore structure, where (B) the DMI vectors are
shown for one of the tetrahedral crystals. (C) The resulting magnon Hall effect observed

for magnons travelling through a temperature gradient.

2.4.3 Possible mechanisms for the Anomalous Hall Effect for magnons

While the AHE for electrons has been extensively researched [24], the effect for magnons

is a recent subject of interest [19]. The Berry curvature in momentum space, section

2.4.1, for various particles such as electrons, photons, and magnons, can cause Hall effects

such as the Spin Hall effect and the thermal Hall effect. Because the Berry curvature

originates from the wave nature of these particles, a non-zero Berry curvature of these

particles would then manifest as Hall effects [28].

For magnons transport it can be shown that the Dzyaloshinskii-Moriya spin-orbit inter-

action (DMI) for pyrochlore structures is non-zero and therefore the Berry curvature of

the magnon would also be zero, thus the AHE for magnons can be proven and observed

for thermal gradients in pyrochlore structures, as can be seen in figure 2.7 and has been

shown by Onose et al. [19]. For YIG however it is much more difficult to prove the same,

since the crystal structure of the YIG is very complicated, as seen in section 2.2. It is

very difficult to quantize the DMI for YIG, because the crystal structure does not show

any clear inversion symmetry center or lack thereof.

Therefore from comparison with the AHE for electrons the following two hypotheses can

be made for the AHE for magnons:

1. The AHE for electrons shows that charges with opposite spin-polarization direction

deflect towards opposite directions, as can be seen from figure 2.6. Therefore if the
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magnons have opposite magnetic momentum these magnons should also deflect

towards opposite directions.

2. The AHE for electrons has three vectors, the propagation direction of the elctron,

the spin-polarization direction and the direction of the deflection. These three

vectors are orthogonal to each other. Now if three similar vectors would be defined

for magnons, so the propagation direction of the magnon spin current, the magnetic

momentum of the magnon and the deflection direction of the magnons, then these

three vectors should also be orthogonal to each other.

This last hypothesis can be compared with figure 2.7. In this figure the deflection di-

rection of the magnon is orthogonal to the propoagation direction of the magnon spin

current and the magnetic moment of the magnon, so thus far the hypothesis is correct.

2.5 Spin Seebeck Effect

When two rods of the same length but of different material are placed parallel to each

other and one end of the rods gets heated, a heat gradient will form along the length of

the rod, as can be seen in figure 2.8(a). Now because the rods are of different material

the heat in one rod will move more easily than the other. When the other ends of the

two rods get connected electrically it is possible to measure a voltage difference due to

the difference in heat conductivity of the materials. The phenomenon of the voltage

being generated is known as the Seebeck effect [29]. The setup described is called a

thermocouple and rate of heat to electricity conversion is called the Seebeck coefficient.

This efficiency is governed by the scattering rate and density of conduction electrons.

However, when taking a metallic magnet there is a difference between the scattering

rates and densities of spin up- and spin down electrons. When applying a temperature

gradient to this type of material it is possible to measure a spin voltage on the other end

of the magnet, as can be seen in figure 2.8(b). This effect is then called the Spin Seebeck

Effect (SSE) [30]. Furthermore this SSE allows to pass a pure spin current over long

distances. A temperature gradient in the YIG can be present due to the Joule heating

of the injector strip. This temperature gradient can be detected as a charge signal using

the ISHE. The SSE can go much further in the ferromagnetic material than the spin

relaxation length of a magnon, which results in the fact that the SSE is measured on

the signal of the thermal magnons, due to the way the lock-in amplifiers are used to

differentiate between the first and second harmonic magnon.
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Figure 2.8: (a), Image of a thermocouple where metal A and metal B have a different
Seebeck coefficient. Applying a temperature gradient to the thermocouple results in
a current at the cold end proportional to the difference in Seebeck coefficients. (b),
Depiction of the Spin Seebeck effect. The spin-up and spin-down electrons have a
different Seebeck coefficient in a metallic magnet and thus a spin potential arises (µ↑−
µ↓) at the cold end. This potential is proportional to the difference in Seebeck coefficient

of the electrons [30].

2.6 Stoner Wohlfarth Model

Every ferromagnetic material tries to achieve a state minimum energy, as described by

equation 2.2. The potential energy is minimum when all the spins are aligned in the

same direction and this state is called the ground state of the ferromagnetic material.

For ferromagnetic materials with crystal anisotropy the ground state can be more easily

achieved in a certain direction than others as described by the following equation

EEED =
1

2
III20(N1α

′ 2
1 +N2α

′ 2
2 +N3α

′ 2
3 ) (2.31)

where α′1, α′2, α′3 are the direction cosines of I0, the magnetization, N1, N2, N3 are

the demagnetization coefficient along different axes of the material, which are different

from each other for ferromagnets with crystal anisotropy. ED describes the energy of

an ellipsoid per unit volume associated with the demagnetization fields. When placing

a ferromagnetic material in a magnetic field the magnetization will try to align with

this magnetic field to achieve a ground state again. This is where E.C. Stoner and E.P.

Wohlfarth introduce their theory [31].

When achieving a ground state in a ferromagnet there are several factors which will

influence this ground state. The first of these is the boundary movement process, where
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magnetic boundaries will form and move to achieve an as low as possible boundary

energy. These boundaries are susceptible to stress variations, which means that as a

boundary is in equilibrium position and a magnetic field is placed with an angle with

respect to the ground state magnetization, this boundary will move reversibly until

it reaches some value for which the energy gradient is maximum. At this point the

boundary will move spontaneously to a new equilibrium position. This stress variation

is the main contributions to the boundary movement process and in ordinary material

(material with 1010 to 1015 atoms) this process would be enough to bring the material

in a ground state, where the magnetization points along the easiest directions. However,

when considering a heterogeneous alloy, which is a material where more ferromagnetic

particles are separated by less ferromagnetic particles, a second process is prrotation

process in single domains,es, the ent. In this kind of structure it may not be possible to

create boundaries in certain domains. This process can have a greater effect than the

boundary movement processes.

Figure 2.9: Definition of the symbols for the SW model [31]

These effect have been generalized by Stoner & Wohlfarth in their model, which goes

as follows. Turning an uniformly magnetized ellipsoid about its longer axes will create

a prolate spheroid. This prolate spheroid can be seen in figure 2.9. The direction of

the equilibrium magnetization of this prolate spheroid lies in a plane constructed by

the directions of the applied magnetic field (H) and the polar axis of the ellipsoid.

Consequently θ is the angle between the polar axis of the ellipsoid and the positive

direction of H. φ is the angle of the magnetization direction with the applied field and

ψ is the angle of the magnetization with respect to the polar axis of the ellipsoid, so that

φ = θ + ψ (2.32)

For an ellipsoid, the energy per unit volume for spherical coordinates (ED), as seen in

equation 2.31, and the energy associated with an applied magnetic field (EH) can be
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written together as the term for the total relevant energy,

EEE′ = EEED +EEEH =
1

4
(Nb +Na)III

2
0 −

1

4
(Nb −Na)III

2
0cos(2ψ)−HIHIHI0cos(φ) (2.33)

whereHHH is the applied magnetic field, III0 is the direction of the magnetization and Na &

Nb are the demagnetization constants along the polar and equatorial axes respectively.

Rewriting this obtains the reduced energy,

η′ =
EEE′

(Nb −Na)III20
=

1

4

Nb +Na

Nb −Na
− 1

4
cos 2ψ − HHH

(Nb −Na)III0
cosφ (2.34)

From this the variable part of the energy can be obtained, which is the following

η = −1

4
cos 2ψ − h cosφ (2.35)

where

h =
HHH

(Nb −Na)III0
(2.36)

Here h can be regarded as a variable which gives the rate of magnetization. For a

larger applied magnetic field, the material will be more saturated. Equation 2.35 can be

rewritten as

η = −1

4
cos 2(φ− θ) − h cosφ (2.37)

Treating h and θ as fixed this equation can be derived to obtain the stationary value of

the function given by
∂η

∂φ
=

1

2
sin 2(φ− θ) + h sinφ = 0 (2.38)

which correspond to the minima, the point of inflexion, and the maxima, respectively,

described as follows
∂2η

∂φ2
= cos 2(φ− θ) + h cos φ T 0 (2.39)

The goal of using this model is to get a relation between the angle of the applied magnetic

field HHH with the sample plane, θ, and the angle of the magnetization III0 with the sample

plane, ψ. Thus equation 2.38 is rewritten as follows

h sin (ψ − θ) = −1

2
sinψ (2.40)

where −θ is chosen instead of θ so that it lies in the same direction of the magneti-

zation for clarity, since for higher applied magnetic fields than the saturation field the

magnetization closely follows the direction of the applied magnetic field.

A plot of this result with an applied magnetic field twice the saturation magnetization,

so that h = 2, is shown in figure 2.10. Here the effect of the Stoner Wohlfarth model

can be clearly seen. When the angle of the magnetic field increases the magnetization
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Figure 2.10: Plot of psi(y) vs θ(C) for an applied magnetic field twice the satura-
tion field. Even though the material is fully saturated, the magnetization does not

completely follow the applied magnetic field.

angle will lag behind until a certain point where an easier direction is reached, then the

magnetization angle will catch up with the magnetic field angle and it will even overshoot

a little bit because the easy direction is at that point still ahead of the magnetic field

angle. This process repeats itself and so the shape in figure 2.10 is created.



Chapter 3

Experimental Methods

The methods used to create and measure the device are explained below. The device is

created by standard Electron Beam Lithography procedure and is measured in a 2-lockin

measurement setup.

3.1 Device Fabrication

The fabrication of each device starts the same. A layer of 100nm thick YIG is grown

onto the (111) plane of a 500µm layer of Gd3Ga5O12 by liquid-phase epitaxy (LPE).

From this wafer a small piece is cut off and that will be the basis of the device fabrication.

All the fabrication steps are explained in detail and step-by-step, in appendix A.

3.1.1 Electron Beam Lithography

The device will be patterned using electron beam lithography (EBL), since the geometry

of the device will contain multiple wires of only a few hundred nanometers wide in close

proximity to each other. However to successfully do the EBL the sample needs to be

cleaned and coated with a layer of photoresist.

• Cleaning of the Sample - Every time a new sample is being worked on it will

first be cleaned thoroughly. The sample is rinsed with de-ionized water, acetone,

isopropanol (IPA) and ethanol, see appendix A. After the cleaning steps have been

done the sample can be checked under the optical microscope to see if the dirt

is gone under [1000x magnification]. If there is still some left, then the cleaning

procedure can be done again.

26
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• Spin Coating - To be able to make a pattern on the device it is necessary to place a

mask on the device which will protect most of the device except for a few selected

areas. This mask is created by first spincoating a layer of photoresist, Poly(methyl

methacrylate) or PMMA for short, onto the sample. The PMMA used to for

spincoating is PMMA 950K 4%, which gives a ∼ 210nm thick layer of photoresist

after spincoating. The PMMA is spincoated at 4000 rpm for 60 seconds. After

spincoating the PMMA an uniform layer should be on the sample. This can be

check by placing the sample under the optical microscope, since the YIG is mostly

transparent the thickness changes of the PMMA at the edge of the YIG sample will

show as a rainbow color. If that is the case, then the middle of the sample has an

uniform thick layer of PMMA, onto which the device can be patterned. However,

to proceed with the EBL a conducting layer on top of the sample is needed, since

neither the YIG or the PMMA can conduct electrons well. To compensate for this

a layer of aquaSAVE is spincoated onto the sample. The procedure for spincoating

the aquaSAVE is exactly the same apart from it being spincoated at 6000 rpm for

120 seconds. After this is done the sample is once again checked under the optical

microscope to see if the spincoated layers are still uniform. If this is the case then

the EBL procedure can be started.

• EBL Procedure - To make a pattern onto the sample the Raith e-line electron beam

system was used. By using EBL on a PMMA mask, which has long chain polymers

it is possible to break these polymers into short chain polymers in certain regions,

i.e. the regions where the device will be patterned.

• Development - After the EBL is done a pattern of short chain polymers will remain.

During the development these short chain polymers will be removed while the long

chain polymers will stay during the deposition of a material. With the development

the sample is put into a developer liquid, MIBK:IPA (3:1) in this case, in which the

short chain polymers dissolve. Then after 30 seconds all these short chain polymers

should be dissolved and the developing process is stopped by placing the sample

in IPA for 30 seconds, otherwise the long chain polymers could also dissolve. After

the development is done the material can be deposited onto the sample by ways

of sputtering or evaporation, which will be explained in sections 3.1.2 & 3.1.3,

respectively. For the samples that were created the Pt wires were sputtered and

the Ti/Au contacts were evaporated.

• Lift-off - Finally when all of the above has been done the lift-off can be done. The

sample is now coated with a layer of either Pt or Ti/Au which needs to be removed

from the part which is not patterned. The lift off is done by letting the sample

sit in hot acetone for a long time, to fully remove the long chain polymer PMMA
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as well. If it is fully developed, a large part of the material deposited won´t be

in contact with the sample. This part can be carefully shaken off and results in

the EBL pattern remaining on the sample. After all the electrical components,

the Pt wires and Ti/Au contacts, are successfully deposited on the sample one

last step remains before the sample can be measured. The sample is glued onto a

chip-carrier. After the glue has dried the big pads of the sample can be connected

with the wiring of the chip-carrier itself. Here one end of a small wire is soldered

to one pad of the chip-carrier, then the other end of the wire is soldered and cut

to one of the big pads on the sample.

All of the measurement data in this thesis will be done on samples made by the above

procedures. Any anomalies are documented in an electronic logbook of which the data

can be requested from the author of this thesis.

3.1.2 Sputtering

To create the platinum wires on the device it is necessary that it has a good connection

with the YIG to have a high spin mixing conductance and therefore a larger measured

signal. This can be achieved by sputtering where a plasma is created which bombards a

material source and excites highly charged ions. These highly charged ions then diffuse

towards the sample where they bombard the sample from multiple angles, the whole

process can be seen in figure 3.1.

The sputtering is done in an argon atmosphere. By placing a big potential difference

between the stage where the sample is loaded and the material source the argon will form

a plasma [11]. The target material is then set under negative bias so the Argon ions will

accelerate towards the target diffusively and therefore hit the target from many angles.

This ejects particles from the target which then move towards the substrate. This results

in a homogeneous thick layer of the target ions embedded upon the substrate.

Figure 3.1: [11], (a) Illustration of sputtering process. An Argon plasma is created
from which the ions accelerate towards a negatively biased target, this will eject target
ions, which diffusively hit the target. (b) The diffusive target ions create a homogeneous

layer on the substrate.
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Figure 3.2: [11] (a) Picture of the measurement setup, an electronmagnet (b) is also
connected to this setup. (c) Rotating sample holder between the two poles of the

electromagnet.

3.1.3 Electron-beam Evaporation

Most often Electron-beam Evaporation is used as a controlled deposition method. An

electron beam is targetted onto a metal. The electrons will heat up the metal and

eventually the target material will start evaporating. This vapor will then rise and deposit

on the substrate placed above the material source. The deposition rate is measured by

measuring the eigenfrequency of a reference crystal next to the substrate, which can then

be calculated to the thickness of the deposited layer.

3.2 Measurement Set-up

The measurements for this thesis are done by rotating a magnetic field from in plane to

out of plane with respect to the sample plane. This is achieved yb using an electromagnet,

as seen in figure 3.2(b). Between the poles of this electromagnet is a brass rotating

sample holder, which is non-magnetic, see figure 3.2(c). In this rotating sample holder

sits a 16-pin chip-carrier with the sample bonded on it. The sample holder has 3 degrees

of rotation as can be seen in figure 3.3, the first where the sample is tilted, where it is

rotated along an angle from y to z. The second can rotate the sample out of plane, so

along an angle from x to z and the third will rotate the sample in plane, an angle from

x to y which is also the degree of rotation which can be automated by a motor.

A voltage will be sent from the lock-in amplifier to a voltage to current converter. This

current amplifier will go to the switchbox where it can be determined which wire on

the sample is the injector or the detector and the switchbox can protect the sample by

switching the connections on and off when the connections are rewired. The detector
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Figure 3.3: The sample has three degrees of rotation. It can be rotated along an
angle from y to x, from y to z and from x to z

wire is connected to the amplifier of the meetkast which is connected to both the lock-in

amplifiers, where the first and second harmonic signal can be separated from each other.

All of the measurement equipment is also connected to the computer, from where it is

possible to control and automate the measurements.

3.3 Measurement techniques

As mentioned before, the measurements are done using lock-in detection [11]. This

technique can differentiate between different order signals of the detected voltage. A

voltage with different order signals can be written as

V (t) = R1I(t) +R2I
2(t) +R3I

3(t) + . . . (3.1)

where Rn is the n-th order response of the system for an applied current I(t). The

current used is an AC current and can be written as

I(t) =
√

2I0sin(ωt) (3.2)

where ω is the angular frequency and I0 the rms of the amplitude of the signal. By

knowing the input signal, the lock-in is then able to differentiate between any higher
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harmonics. Now the voltage of the n-th harmonic can be written as

Vn(t) =

√
2

T

t∫
t−T

sin(nωs+ φ)Vin(s)ds (3.3)

where T is the duration of one period and Vin is the input voltage form the lock-in

amplifier voltage source. Now it´s possible to evaluate this input voltage and obtain

the several harmonic responses that correlate with this input voltage. These harmonic

voltage signals can then be written as:

V1 = R1I0 +
3

2
R3I

3
0 forφ = 0◦

V2 =
1√
2

(R2I
2
2 + 2R4I

4
0 ) forφ = −90◦

V3 = −1

2
R3I

3
0 forφ = 0◦

V4 = − 1

2
√

2
R4I

4
0 forφ = −90◦

(3.4)

Now the first and second order response of the system can be written as

R1 =
1

I0
(V1 + 3V3)

R2 =

√
2

I20
(V2 + 4V4)

(3.5)

Now only harmonics up to the fourth harmonic have been taken into account, but this

can in principle be extended to even higher harmonics. From equation 3.5 it follows

that it is sufficient to study the first and second response of the measurements, since all

the higher order signals are present in these responses. These higher harmonics can be

extracted by analysing the data, where a fit can be made of the expected signal with

respect to the measurement. The difference of the data and the fit, the residual, is the

data for the next harmonic response, thus the first residual of the first harmonic response

shows the third harmonic signal.
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Results and Discussion

In this chapter the results of the 100nm YIG will be analyzed and discussed. First

the 100nm thick YIG is compared with 200nm and 210nm thick YIG samples from

Cornelissen et al. [1] to see the difference in the behaviour of this thinner sample after

which the out of plane measurements are analyzed and discussed. The MATLAB code

used to process all the data can be found in appendix B.

4.1 Comparison of 100nm YIG sample with 200nm YIG

samples

The sample that was measured for thesis is based on 100nm YIG from Matesy, Ukraine.

This YIG is thinner and from a different supplier than previous samples measured in the

research group [1], therefore some measurements on the sample were taken of which the

Figure 4.1: EBL image of marker field 4 (MF4), the markerfield after fabrication
should end up as this one. The blue shapes will form the Ti/Au wires leading from the
square labelled pads to the platinum wires, which are the red lines in the middle of the
device. The labels on the pads will later be referred to when distinguising a certain

platinum wire as either the injector or detector.

32
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results are known for the 200nm YIG as a way of comparison. The design and sample

can be seen in figures 4.1 & 4.2, respectively. The Pt wires, 12500nm× 200nm× 7nm

(l×w×t), were sputtered for 2 seconds. These wires are connected by Ti/Au 5/75nm

thick contacts. Figure 4.2 displays the optical view of one marker field of the sample.

First the local measurements done on the sample will be discussed. When a local mea-

surement is taken, it is meant that the injector and detector is the same strip, a visu-

alization of this can be seen in figure 4.3. In the figure an electron current can be seen

going from the source to the electron strip. Here it will excite magnons both thermally

and by the SHE. The GGG substrate has approximately the same thermal conductivity

as the YIG, so a temperature gradient will go down into the material. The magnon spin

current will be parallel to this temperature gradient and since the thickness of the YIG

is less than the magnon relaxation length, a magnon spin accumulation will appear at

the interfaces with opposite signs between the YIG|GGG- and Pt|YIG interface [1]. The

magnons at the Pt|YIG interface will then by virtue of spin pumping be absorbed by the

platinum wire leaving a spin-polarized asymmetry in the detector strip, which in turn

will induce a current by virtue of the ISHE.

Figure 4.2: Optical image of MF4 made on top of 100nm YIG from Ukraine, Matesy.
The Pt wires, 12500nm×200nm×7nm (l×w×t), were sputtered for 2 seconds and can
be seen in the figure as the lighter green wires between the numbered gold wires. These
wires are connected by Ti/Au 5/75nm thick contacts. The terminals to which the
contacts are connected are labelled appropriately in the image. The distances between

each of the Pt wires is from centre to centre.
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4.1.1 Spin Magneto Resistance

The Spin Magnetoresistance (SMR) can be obtained from the local measurement by

two ways. The first is by doing an angle sweep at fixed magnetic field as can be seen in

figures 4.5 & 4.6. In this measurement the angle between the polarization direction of the

spin-polarized current and the magnetization of the YIG will vary. By following the right-

hand-rule in section 2.2.1.2 it can be deduced that a spin-polarized current with spin-

polarization antiparallel with B at 0 degrees will be at the Pt|YIG interface, see figure

4.5. When the magnetization is perpendicular to the strip, it will be parallel to the spin

polarization direction, as is the case for α = 0, thus the angular momentum of the electron

will not be transferred to the YIG, as can also be understood from 2.10. The electron

will then reflect from the Pt|YIG surface and will keep their spin-polarization. This

spin-current will then flow back into the platinum. This spin-current will create a charge

current according to the ISHE which will be in the same direction as the current from

the source. Therefore, the same current that was sent will be detected, thus a maximum

should be expected here. If magnetization is parallel to the strip, so perpendicular to

the spin-polarization, then the angular momentum of the spin-polarized electrons will

mostly be absorbed by the YIG. These magnons will dissipate in the material and only

the sent charge current will be detected, thus a minimum should be expected here [11].

The result of such a measurement can be seen in figures 4.5 & 4.6. The SMR from these

plots can be calculated as:

∆R/R = SMR (4.1)

and the results are displayed in table 4.1. The values of these signals come in close agree-

ment with the ones in figure 4.4, which is a plot of the SMR signal to platinum thickness.

Figure 4.3: Example configuration for a local measurement
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The platinum that was sputtered is approximately 7nm thick, which corresponds to an

SMR of SMR ∼ 2E − 4. In the result for strip 5-6 it can be seen that there is some

negative drift in the curve, this is not present for the SMR curve for strip 7-10. The

reason for this drift could be that as time increases the platinum strip will heat up and

the resistance will lower, thus explaining the slope since the measurements are started

at −360 degrees. Strip 7-10 is already warmed up more, since the total resistance is

already much smaller than for strip 5-6 and consequently no clear negative slope can be

seen in this signal. Since the SMR signal for 100nm YIG is in close agreement with the

SMR signal for 200nm YIG it can be concluded that the thinner YIG has no clear effect

on the SMR, which makes sense, since the SMR is only dependent on the spin-mixing

conductance of the Pt|YIG interface.

The second way to measure the SMR signal is by doing a magnetic field sweep on a

sample where the magnetic field is perpendicular on the injector and detector. Here a

peak or dip should be seen in the resistance of the detector when the magnetic field

passes the value for the coercive field Hc, which would be around 1.25E − 4T . The

reason for this is as the magnetic field passes the coercive field, the magnetization will

briefly be perpendicular to the spin-polarization direction and thus most of the angular

momentum of the spin-polarized electrons will be absorbed by the YIG. The result for

this measurement can be seen in figure 4.7. The top graph shows this peak. The blue

Strip SMR

5-6 1.566E-4
7-10 2.047E-4

Table 4.1: SMR values based on local measurements of the first harmonic obtained
from figures 4.5 & 4.6. Platinum thickness of the strips is ∼ 7nm

Figure 4.4: SMR magnitude as a function of thickness of the platinum, taken from
Vlietstra [11]
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part of the graph is the trace and the red part the retrace. The reason why no peak

is shown in the red part can be due to the fact that this type of measurement has

a low resolution, so it is possible that the peak is skipped by one increasing step of

the magnetic field, since the smallest stepsize is 0.4mT . The reason why the red part

decreases as the measurement continues is that the current going through the injector

and detector strip will heat the strip, therefore decreasing the resistance of it. The peak

of this measurement was measured to be 248mΩ. Taking the strip resistance this comes

to an SMR for strip 8-9 of SMR = 0.69E − 4. This value is however much lower than

the previous SMR measurement, which once again may be due to the low resolution of

this type of measurement.

Figure 4.5: In plane measurement on the first harmonic local signal, 5mT , 200µA,
I+5, I-6, V+5, V-6, V-I- on ground. The resistance of the strip is 3.39 kΩ and from
the graph ∆R = 0.531 Ω can be obtained, which gives SMR = 1.566E − 4. A negative

sign at α = 0 is observed.

Figure 4.6: In plane measurement on the first harmonic local signal, 5mT , 200µA,
I+10, I-7, V+10, V-7, V-I- on ground. The resistance of the strip is 3.45 kΩ and from
the graph ∆R = 0.706 Ω can be obtained, which gives SMR = 2.047E − 4. A negative

sign at α = 0 is observed.
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4.1.2 Local Spin Seebeck voltage in the second harmonic signal

Some of the thermal characteristics of the thinner YIG can be determined by comparing

the local second harmonic measurements with previously reported results [1]. Since the

YIG is thinner and smaller than the magnon relaxation length there would be a magnon

spin accumulation at the YIG|GGG and Pt|YIG interfaces with opposite signs. Therefore

the signal from the second harmonic should not be affected too much by the thickness

of the YIG, just by the current sent through. The results for this measurement can be

found in figures 4.8 & 4.9. Cornelissen et al. [1] reports a magnitude of 2E − 5V for

the local second harmonic signal, which is approximately the same magnitude of the

result on strip 5-6. This also agrees nicely with the result previously obtained for the

first harmonic local signal, where strip 5-6 had a similar SMR to the one reported for

200nm YIG and again the signal is a little bit smaller. Strip 7-10 however has a SSE

voltage which is about 4 times smaller than for the thicker YIG, which is quite curious

considering the resistances of both strips are approximately the same and the current sent

through both strips is the same. The signal from the measurement of strip 7-10 itself is

already 4 times smaller than the signal for strip 5-6, therefore the voltage of the measured

signal should also be 4 times smaller than for strip 5-6. This could imply that either the

Figure 4.7: In plane measurement with fixed angle and variable magnetic field at
200µA, I+8, I-9, V+8, V-9. V-I- on ground. The strip resistance is 3.58 kΩ and from

the graph ∆R = 0.248 Ω can be obtained, which gives SMR = 0.69E − 4.

Figure 4.8: In plane measurement on the second harmonic local signal, 5mT , 200µA,
I+5, I-6, V+5, V-6, V-I- on ground. Amplitude of the signal is 1.714E − 5V .
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wiring during that measurement was defect or that the resistance of the strip itself had

changed due to annealing effects. While the resistance of that strip did indeed change

after some measurements it did not return a resistance 4 times lower. As for the shape,

the non-equilibrium magnons created by the joule heating have a magnetic momentum

opposite of the magnetization, so antiparallel to B at α = 0 in figure 4.8. As described

in section 1.2 the magnons transport diffusive through the YIG and will accumulate

at the GGG|YIG interface. This causes a magnon gradient where magnons with an

opposite magnetic momentum will accumulate at the PT|YIG interface, so parallel to

B at α = 0. Because of the spin pumping an electron with spin-polarization opposite

to the magnetic momentum will be excited at the Pt|YIG interface, so antiparallel to B

at α = 0. The electron propagation direction and the spin-polarization directions are

known, then by virtue of the sign of the ISHE the electron deflection is in the direction

towards V+7, thus a minimum should be expected at 0 degrees. This sign is consistent

with the one observed by Cornelissen et al. [1]. To conclude, the measurement on strip

5-6 does confirm the hypothesis that the local SSE signal of the second harmonic should

not differ for thinner YIG.

4.1.3 Magnetization of the YIG

The 100nm YIG will have different magnetization properties than its 200nm thick

counterpart. Because the material is thinner it will cost more energy to align the mag-

netization of the YIG out of plane since it is easier for the 100nm YIG to have its

magnetization in plane, the easy axis and because of the shape anisotropy of the YIG,

which is even more anisotropic since the YIG is smaller, the magnetization will be even

Figure 4.9: In plane measurement on the first harmonic local signal, 5mT , 200µA,
I+10, I-7, V+10, V-7, V-I- on ground. Amplitude of the signal is 0.5314E − 5V . The
electrons go towards V+10 thus the current detected has opposite sign from the current
source, thus the positive maximum at 0 degree should be a negative minimum, as can

be seen.
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more difficult to pull out of plane. This will also have an effect on the coercive field

for in plane magnetic field sweeps. In figure 4.10 the in plane magnetization for a local

measurement can be seen and in figure 4.11 the magnetization for 45 degrees out of

plane magnetization. A clear hysteresis loop can be seen in both figures. From the in

plane measurement the coercive field is determined to be Hc = 1.25E − 4T , while the

coercive field for the 200nm YIG is 0.6E− 4T [11], so the coercive field for 100nm YIG

is approximately twice as large for in plane magnetization.

Figure 4.11 shows the magnetization curve for YIG that is 45 degrees out of plane.

Around zero the hysteresis curve for in plane magnetization can still be seen, however

the slope at higher magnetic fields indicates that the out of plane component of the YIG

Figure 4.10: Coercive field for in plane 100nm thick YIG, 200µA, I+8, I-9, V+8,
V-9, V-I- on ground.

Figure 4.11: Coercive field for in plane 100nm thick YIG, 200µA, I+8, I-9, V+8,
V-9, V-I- on ground. The resistance as a function of magnetic field is shown. H is the
coercive field and Bc+ and Bc− two points on the hystersis loop chosen at the same

resistance to help determine the coercive field.
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is not completely saturated yet. Therefore any out of plane measurement taken will not

be completely saturated, since the measurement setup did not allow any higher magnetic

fields. However, the Stoner Wholfarth model 2.6 can still be applied, so this will not

prove to be a problem when analyzing the results.

4.1.4 Nonlocal in plane measurements

To see if the magnon transport is different for the 100nm YIG some nonlocal in plane

measurements are done. The thinner YIG may behave different due to the spin accumu-

lation at the YIG|GGG interface having a higher reach. As Cornelissen et al. [1] reported

for 200nm YIG, nonlocal measurements up to 500nm showed a change of sign due to

the spin accumulation at the YIG|GGG interface having the same effect for local as for

these nonlocal measurements. The measurements can be seen in figures 4.12-4.17.

4.1.4.1 Shape of the non-local measurements

First of all the shape of the second harmonic signals can be explained as follow, where fig-

ure 4.12 will be taken as example. The magnetic moment of the thermal non-equilibrium

magnons will be opposite to the magnetization of the material, so antiparallel to B at

α = 0. The magnons will diffuse and some of them will get picked up by the detector

strip, here the magnons will excite electrons with a spin-polarization direction opposite

to the magnetic momentum of the magnon. So the electrons in the detector have a spin-

polarization parallel to B at α = 0. Because of the detection efficiency, where only the

electrons with spin-polarization perpendicular to the detector strip will be measured due

Figure 4.12: In plane magnetic field measurement second harmonic for 1000 nm
injector detector distance, B = 40mT , 600µA, I+9, I-8, V+7, V-10, V-I- on ground.
The top left graph is the signal and a sine function fit on that signal, the top right graph
is the residual of the first, again with a sine fit, the bottom left graph is the residual of

that graph and its fit and finally the bottom right graph is again the residual.
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to the ISHE, a cos(α) dependence should be expected. Now the propagation direction

of the electron and the spin-polarization direction is known and by using this with the

right hand rule for ISHE from section 2.2.1.2, the electron will deflect to V=7 for B at

α = 0. Therefore a positive or negative maximum of the signal will be present each time

the field is perpendicular to the detector strip. Now by definition of the voltage where

the voltage is positive if the negative charge flows towards the negative pole, a minimum

signal should be expected since the electrons travels towards V+7 for B at α = 0. This

is also what can be seen in figure 4.12.

The shape for the first harmonic measurements is different from the second harmonic as

will be explained with figure 4.13 as example. The electrons start from the negative side

of the current source and travel through the injector where they will deflect according

to the SHE. A spin-polarized current in with polarization direction antiparallel to B

at α = 0 is deflected toward the Pt|YIG interface. From the spin-mixing conductance

explained in 4.1.1 it is known that if the applied magnetic field is perpendicular to the

injector strip most of the angular momentum of the electrons get absorbed by the YIG

where their magnitude is cos(α) dependent. The magnetic moment of the magnons

generated by this current will be in opposite direction of the spin-polarization direction,

so parallel to B at α = 0. The magnons will then travel diffusive and some get picked

up by the detector strip. As explained for the second harmonic, because of the detection

efficiency, where only the electrons with spin-polarization perpendicular to the detector

strip will be measured due to the ISHE, a cos(α) dependence should be expected, so

antiparallel to B at α = 0. Again the propagation direction of the electron and the

spin-polarization direction of the electron is known, so by using the right-hand-rule for

Figure 4.13: In plane magnetic field measurement first harmonic for 1000 nm injector
detector distance, B = 40mT , 600µA, I+9, I-8, V+7, V-10, V-I- on ground. The top
left graph is the signal and a sine function fit on that signal, the top right graph is the
residual of the first, again with a sine fit, the bottom left graph is the residual of that

graph and its fit and finally the bottom right graph is again the residual.
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the ISHE from section 2.2.1.2 the electrons are deflected towards V-10. Therefore a

maximum should be expected every 180 degrees. This is also what can be seen in figure

4.13

In figure 4.13 a pi asymmetry can be seen which cannot be explained from the SHE and

ISHE. This pi asymmetry is an artifact from the measurement setup. The AC current

generated by the amplifier has a small DC component so that

I = IDC + I0sin(ωt) (4.2)

Now because of the quadratic current dependence of the second harmonic signal

I2ω ∝ I2 (4.3)

I2ω ∝ I2DC + I20sin
2(ωt) + 2IDCI0sin(ωt) (4.4)

Figure 4.14: In plane magnetic
field measurement first harmonic for
500 nm injector detector distance,
B = 40mT , 200µA, I+3, I-2, V+1,
V-4, V-I- on ground. The top graph
is the measurement and a sinusoidal
fit with fixed period of π and the bot-

tom graph is the residual.

Figure 4.15: In plane magnetic
field measurement second harmonic
for 500 nm injector detector distance,
B = 40mT , 200µA, I+3, I-2, V+1,
V-4, V-I- on ground. The top graph
is the measurement and a sinusoidal
fit with fixed period of π and the bot-

tom graph is the residual.

Figure 4.16: In plane magnetic
field measurement first harmonic for
600 nm injector detector distance,
B = 40mT , 500µA, I+5, I-6, V+7,
V-10, V-I- on ground. The top graph
is the measurement and a sinusoidal
fit with fixed period of π and the bot-

tom graph is the residual.

Figure 4.17: In plane magnetic
field measurement second harmonic
for 600 nm injector detector distance,
B = 40mT , 500µA, I+5, I-6, V+7,
V-10, V-I- on ground. The top graph
is the measurement and a sinusoidal
fit with fixed period of π and the bot-

tom graph is the residual.
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The last term on the right-hand part will arise in the first harmonic signal, therefore a DC

component is measured in the first harmonic, as can be seen from the measurement data.

Even though the DC component is small it does have an influence on the measurements

because the signal measured is also small. The pi asymmetry is then due to this DC

component having a sin(ωt) dependence.

With these in plane measurements it is possible characterize the signal to distance depen-

dence as can be seen in figures 4.18 & 4.19. Comparing these with previously reported

signal to distance measurements [1] shows that the values for the first harmonic signal

are similar to the previously reported measurements, albeit slightly larger. The second

harmonic signal however is approximately twice as small. Since these are the thermal

magnons it is possible that the magnon gradient is smaller compared with the 200nm

YIG, since less magnons will be able to pile up at the bottom of the YIG, as is the case

for the local second harmonic signal.

4.2 Out of plane measurements

Following the hypotheses made in section 2.4.3 out of plane measurements are done, so

that if there is an AHE for magnons in YIG it should be seen from these measurements.

The results for the out of plane measurements can be seen in figures 4.20 & 4.21, where

the magnetic field sweeps from in plane to out of plane whilst always being perpendicular

to the injector and detector strips. Also since no qualitative or quantitative has been

made yet, the strategy of obtaining some result is to analyze the results and check all the

signals if they are artifacts from the measurement setup so that these can be removed.

Figure 4.18: Magnitude of the first harmonic signal for in plane measurements at
several nonlocal distances for various currents and 40mT
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First the second harmonic signal will be discussed, which can be seen in figure 4.21. The

shape of the signal can be explained in the same way as was done in section 4.1.4.1.

Furthermore from the residual plots from figure 4.21 three signals can be seen apart

from the measured signal, each signal having some 2-fold component added to it. If

there would be an AHE for magnons it should be one these signals. The discussion of

these signals will continue in section 4.2.1.

The first harmonic signal can be seen in figure 4.21. Again the shape can be explained

Figure 4.19: Magnitude of the second harmonic signal for in plane measurements at
several nonlocal distances for various currents and 40mT

Figure 4.20: First harmonic signal for out of plane measurements, B = 350mT ,
600µA, I+9, I-8, V+7, V-10, V-I- on ground. Nonlocal measurement with 1000nm
injector-detector spacing. The top left graph is the signal and a sine function fit on
that signal, the top right graph is the residual of the first, again with a sine fit, the
bottom left graph is the residual of that graph and its fit and finally the bottom right
graph is again the residual. The number in the plot is the magnitude of the signal and

how large this signal is compared to the total measured signal.
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in the same way as done in section 4.1.4.1. Two clear signals can be seen in the residuals

from figure 4.20 each adding a 2-fold component, the last residual is too noisy to really

use.

4.2.1 Stoner Wohlfarth model

As discussed in section 2.6 the magnetization of an anisotropic material does not com-

pletely follow an applied magnetic field if this field is varied with angle and if the applied

magnetic field is not large enough. The model shown in that section can be applied to

the measurements, where the angle of the magnetic field is replaced by the angle of the

magnetization. Doing this process results in figures 4.22 & 4.23. Now the measurements

with and without the Stoner Wholfarth model applied can be compared with each other.

First of all the signal looks much more like the one seen for the in plane measurements

for both harmonics, the sharp corners at 90 degrees for the first harmonic are gone and

the second harmonic signal is less rounded. The curves are still not entirely the same,

due to some other out of plane magnetization physics, therefore a small signal due to

this magnetization lagging should still be present, albeit considerably smaller.

For both the second and first harmonic signal, figure 4.23 and 4.22 it can be seen that

the second residual signal from the original measurement compares with sign and mag-

nitude with the first residual signal from the measurement with SW model applied. The

Figure 4.21: Second harmonic signal for out of plane measurement, B = 350mT ,
600µA, I+9, I-8, V+7, V-10, V-I- on ground. Nonlocal measurement with 1000nm
injector-detector spacing. The top left graph is the signal and a sine function fit on
that signal, the top right graph is the residual of the first, again with a sine fit, the
bottom left graph is the residual of that graph and its fit and finally the bottom right
graph is again the residual. The number in the plot is the magnitude of the signal and

how large this signal is compared to the total measured signal.
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same observation is also true when comparing the third residual signal from the origi-

nal measurement with the second residual signal from the measurement with SW model

applied. Also in the third residual signal of both measurements with SW model applied

a pi-asymmetry can be seen, which was not obvious previously. The pi-asymmetry of

the first harmonic is due to the same reasons there was a pi-asymmetry in the non-local

in plane measurements. The pi-asymmetry in the second harmonic signal however has

a −90 degrees phase shift when compared with the pi-asymmetry of the first harmonic

signal, but the same reasoning does not apply here.

Figure 4.22: Measurement data of figure 4.20 adjusted according to the Stoner Whol-
farth model. 90 degrees out of plane first harmonic signal, 350mT , 600µA, I+9, I-8,
V+7, V-10, V-I- on ground. Nonlocal measurement with 1000nm injector-detector
spacing. The number in the plot is the magnitude of the signal and how large this

signal is compared to the total measured signal.

Figure 4.23: Measurement data of figure 4.21 adjusted according to the Stoner Whol-
farth model. 90 degrees out of plane second harmonic signal, 350mT , 600µA, I+9, I-8,
V+7, V-10, V-I- on ground. Nonlocal measurement with 1000nm injector-detector
spacing. The number in the plot is the magnitude of the signal and how large this

signal is compared to the total measured signal.
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4.2.2 Comparison of the hypotheses for the AHE for magnons with
the measurement data

As was discussed in section 2.4.3 the anomalous Hall effect for magnons should have an

opposite sign for magnons with opposite magnetic momentum. Furthermore, this AHE

for magnons should be maximum when the magnetic field is orthogonal to the direction

of the magnon spin current and the magnetic moment of the magnon. This would mean

that the AHE for magnons should appear in the out of plane measurements as some

signal, which should be maximum at α = 0.5π + nπ degrees and zero when α = 0 + nπ

degrees. This magnon should then show some 1-fold behaviour.

Now if the AHE for magnons should be observed in the second harmonic signal, then

this AHE is also subject to the detection efficiency, therefore, the AHE for magnons for

the second harmonic measurement should show as some 2-fold signal. However, when

looking at figure 4.23 only a 3-fold and 5-fold signal can be seen, therefore the AHE for

magnons was not observed in the second harmonic signal.

If the AHE for magnons should be observed from the first harmonic measurement, then

this AHE is subject to both the injection and detection efficiecy, therefore it should show

as some 3-fold signal. When looking at figure 4.22 only a 4-fold and 6-fold signal can be

observed, therefore the AHE for magnons cannot be seen in the first harmonic signal
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Conclusion

From the comparison of the SMR signal for 100nm thick YIG and 200nm thick YIG

it was observed that the SMR signal did not change for the thinner YIG, which can

be explained due to the fact that the SMR is a parameter which is dependent on the

spin-mixing conductance of the Pt|YIG interface. This interface is not affected by the

thickness of the YIG, therefore the SMR is the same for both measurements.

From the local SSE voltage in the second harmonic it was observed that one of the signals

was of equal magnitude compared with [1], which would suggest that the magnitude of

the local SSE signal for the second harmonic is not dependent on the thickness of the

YIG. It is known that the magnon gradient of the local SSE measurements is dependent

on the thickness of the YIG, because if the thickness would be greater than the spin

relaxation length of the magnon, then a sign change would be observed [1]. However the

YIG was still smaller than the magnon spin relaxation length, thus the sign stayed the

same, as was observed.

The coercive field of the 100nm thick YIG was observed to be twice as big than for

200nm thick YIG, this would mean that the shape anisotropy effects have a bigger

magnitude for the thinner YIG. This would then explain that it is more difficult to

change the magnetization from the YIG from parallel to anti-parallel magnetization.

From the measurement with an applied magnetic field at an 45 degree angle with a field

strength twice as big as the out of plane saturation magnetization for 200nm thick YIG,

which is 176mT [11], it was observed that the 100nm thick was not fully saturated yet.

The non-local in plane measurements showed that the sign as expected for 200nm thick

YIG was still the same. Thus the thinner YIG does not seem to have an influence on

the sign when compared with the 200nm thick YIG. From the signal to distance ratio

of the in plane measurements it can be concluded that the thinner YIG does not have

48



Contents 49

an effect on the first harmonic signal. For the second harmonic signal however it can

be observed that the magnitude of the signal is half as large when compared with the

200nm thick YIG. This would mean that the thinner YIG has influence on the transport

of the thermal magnons. It could be possible that more of the heat is dissipated through

the surface of the YIG, thus that the thermal magnons would relax faster.

From the out of plane measurements it was seen that the SW model had influence on the

measurements. Since the second and third residual of both harmonics from the original

measurement data correspond with magnitude and sign with the first and second residual

of both harmonic, respectively, from the data with SWmodel applied, it can be concluded

that the first residual data from the original measurements is the signal due to the SW

model.

It is possible that some of the residual signals left in figures 4.23 and 4.22 are also due

to artifacts of the measurement setup. One of these artifacts could be the Anisotropic

Magnetoresistance, where the resistance of the magnon travel path is dependent on the

anisotropy of the crystal structure.

The AHE for magnons was not observed in both harmonic signals. One reason could be

that the AHE for magnons is subject of a bulk effect, just like the skew-scattering and

side-jump contribution of the AHE for electrons, which are dependent on the chirality

and impurities of the material, respectively. Since the YIG is so small it is possible that

the contributions from impurities and chirality are so small that they are not measured

in this kind of measurement setup, since the AHE for magnons would be on the same

magnitude as the noise measured. What is also possible is that the device geometry is

not suitable for measuring the AHE for magnons even though the magnons transport

diffusive.
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Device Fabrication Steps

The fabrication of each device starts the same. A layer of 100nm thick YIG is grown

onto the (111) plane of a [thick] layer of Gd3Ga5O12 by [method]. From this wafer a

small piece is cut off and that will be the basis of the device fabrication.

A.1 Cleaning of the Sample

The cleaning procedure is as follows:

1. First dip the sample into de-ionized H2O to get some initial dirt off.

2. Now put the sample into 45 ◦C acetone for approximately 5 minutes and then

place the beaker of acetone with the sample in it directly into a sonicator and let

it sonicate for 30 seconds at power 9.

3. Rinse the sample with isopropanol (IPA) for 30 seconds and after finishing also

rinse it with ethanol for 30 seconds to clean off almost all dirt.

4. Dip it into de-ionized H2O again to wash off the ethkanol and blow dry it with a

nitrogen-gun.

5. Finally bake it for 30 seconds at 180 ◦C to remove all remaining water residue.

Now the sample has been cleaned and can be checked under the optical microscope to

see if most if not all of the dirt is gone. If there is still some left, then steps 2-5 can be

repeated again.

50
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A.2 Spin Coating

The spincoating is done as following:

1. Take a chuck which fits with the spincoating machine and place the sample centered

as much as possible on the hole in the chuck, also make sure the hole is sufficiently

small to prevent any liquid being sucked into the hole. Now place the chuck into

the spincoating device. Press ’Vac’ to engage suction.

2. Select or create a spinning recipe which is set to 4000 rpm for 60 seconds. This

setting is applicable to 2%, 3% and 4% PMMA.

3. Prepare a hotplate recipe at 180 ◦C for 90 seconds, which will be used after the

spincoating is done.

4. Take a small amount of PMMA in a pipet and deposit a few drops next to the

chuck before placing a droplet onto the sample. Make sure it is large enough

without falling of the sample. If everything went well, the droplet will remain

unmoved on the sample.

5. Now the spincoating device can be closed and turned on.

6. After it´s done place the sample on the heated hotplate and let the program run.

7. If the sample is done heating take a look at it under an optical microscope. If the

PMMA-layer is uniform on the device, besides the edges, then we can continue,

otherwise clean the sample and repeat the previous steps (be aware not to turn up

the sonication power too high if there are already structures on the sample)

After this is done the sample is checked under the optical microscope to see if everything

is alright, if the surface is uniform enough. If this is the case we can proceed with the

EBL itself.

A.3 EBL Procedure

The following steps for EBL were done:

1. Load the sample into the loading stage after the EBL-machine is done venting. To

make it easier to pattern, the sample is put mostly parallel to the edges of the

loading stage and the sample is clamped on some non-homogeneous side of the

sample to the loading stage. If the sample is in place, click the load sample button
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and then the EBL-machine can start pumping to reach vacuum again. Check if

the desired pressure is reached before continuing the procedure.

2. Now the beam current and size of aperture must be chosen. However the beam

current can vary slightly so it needs to be measured and the beam will also be

out of focus. To measure the beam current, the beam is targeted onto the middle

of the hole of the Faraday cup on the loading stage and after letting it stabilize

the current can be read from the program. Based on the measured current the

dwell time can be determined for a specified step size and electric flux density.

Now there is a test sample (Si/SiO2) on the loading stage as well which can be

used to align the beam to the write field to prevent the sample of interest from

being overexposed due to aligning the beam. The beam is aligned to the write field

for multiple areas reducing in size. The beam is then angled a bit from four sides

which is then calibrated to make sure the beam is circular when hitting the sample.

Finally focus wobble is done to tune the focus of the beam some more. The beam

is now calibrated.

3. To make sure where on the sample the beam will pattern a 3-point alignment needs

to be done first. Making sure that the beam is exposing a small area, three corners

of one sample can be targeted and on each corner the (u,v) coordinate can be set,

with the bottom left corner as (0,0). After setting a (u,v) coordinate it is important

to read the (x,y) coordinate and to adjust it.

4. From the three coordinates it can be determined how big the area of the sample is

which can be used to determine how many marker fields fit onto the sample, where

each marker field is (1000 µm x 1000 µm) in size. Making sure that these fields

are at least 500 µm away from the edge of the sample and at least 200 µm away

from each marker field, the marker fields can be patterned. Start with creating a

position-list and then the pattern for the marker can be selected from a layer from

the E-Line design of the device.

A.4 Development

The development process was done as follows:

1. First wash away the aquaSAVE with some de-ionized H2O for 30 seconds.

2. Now the short chain polymers can be developed and washed away by first holding

the sample in MIBK:IPA (3:1), where MIBK is methyl isobutyl ketone, for 30
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seconds and then immediately holding the sample in IPA for 30 seconds to stop

the development, otherwise the long chain polymers would also go away.

3. Spin dry the sample for another 30 seconds at [amount] rpm. Now the mask can be

looked at one final time under the optical microscope to see if the mask is correct

or not.

After the development is done we can deposit some material on the sample by ways of

sputtering or evaporation. For the samples that were created the Pt wires were sputtered

and the Ti/Au contacts were evaporated.

A.5 Lift-off

The lift-off was done as follows.

1. Prepare two beakers of 45 ◦C acetone during the deposition.

2. Place the sample in one beaker of 45 ◦C acetone and let it rest for approximately

15 minutes.

3. Take the beaker of acetone with the sample in it and carefully take some of the hot

acetone with a pipet. Place the pipet into the acetone with the sample in it and

gently blow on your sample from the top. This will create some flow in the beaker,

which will help get the mask of the sample.

4. Now take the sample and place it into the other beaker to prevent any residue

floating onto the sample and place the beaker with the sample into a sonicator

and let it sonicate for about 10 seconds at power 2-3. Too high power will remove

the material that was just deposited. After sonicating spin dry the sample for 30

seconds at [amount] rpm.

5. Now the sample can be looked at under the optical microscope and see if there is

any material left in unwanted areas. If so then repeat the process until the material

is gone or the material will not go away at all.
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Matlab code

All the measurements are processed by the program data_process, which averages all the

data points from multiple traces and retraces to reduce the effect of noise. The program

is run by data_script where the measurement parameters are given. All the residuals

from the plots are made by programs Datafit1w & Datafit2w which use the standard

matlab fit functions with given parameters, the parameters used can vary per dataset.

The SW model is applied by usin the program AdjustedAngle. What the program does

is make the plot as shown in figure 2.10 then it will take the x (ψ) and y (θ) values used

to make the plot. These values are then interpolated to have more datapoints. Then the

angles of the real data are compared with the x values, which are both the angle of the

magnetic field wrt the sample, and then be replaced by the y value corresponding to the

x values or replaced by the angle of the magnetization

1 close all

2 A = importdata(’data_27.dat’);

3 X = A.data;

4 n = 360;

5 H_f = 350;

6 H_s = 175;

7 r = 1.05; %factor by which the value may differ

8 % [D, C, xdata , ydata , angleAdj] = data_process(X, n, H_f , H_s , r);

9 [D, C, xdata , ydata , angleAdj , xresi , yresi] = data_process(X, n, H_f , H_s , r, 1)

;

10 % A = importdata(’data_25.dat ’);

11 % X = A.data;

12 % [D, C, xdata , ydata , angleAdj , xresi , yresi] = data_process(X, n, H_f , H_s , r,

2);

13 % xl = [56.7/12.5E-6, 49.99/12.5E-6, 30.44/12.5E-6]

14 % yl = [500 600 1000]

15 % xl = [5.524E -3/12.5E-6, 4.833E -3/12.5E-6, 2.651E -3/12.5E-6]

1 %function for processing data

2 %X is input data set

54
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3 %n - number of points measured

4

5 function [D, C, xdata , ydata , angleAdj , xresi , yresi] = data_process(X, n, H_f ,

H_s , r, kl)

6 [p, q]=size(X);

7 a = input(’What data do you want to plot? (3= lockin1X , 4=1x processed , 5=lockin1Y

, 6=1Y processed , 7-10 for 2X etc.)’);

8 b = input(’Include fit from curve tool? (1 for manual , 2 for automatic(not

accurate))’);

9 k=zeros(n);

10 l=0;

11 m =floor(p/n);

12 %m = 1;

13 B = zeros(floor(p/n),n);

14 E = zeros(floor(p/n),n);

15 % E1 = zeros(floor(p/n),n);

16 % E2= zeros(floor(p/n),n);

17 for i =1:n;

18 for j=1:m;

19 % if i+n*(j-1) > p

20 % break

21 % end

22 if mod(j,2) ==0;

23 B(j,i)=X(i+n*(j-1) ,1);

24 else

25 B(j,i)=X(n+1-i+n*(j-1) ,1);

26 end

27 if j > 1 && B(j,i) > r*B(j-1,i)

28 B(j,i) = B(j-1,i);

29 end

30 l = l+1;

31 end

32 C(i,1)=sum(B(:,i))/l*pi/180;

33 l=0;

34 end

35 % angleAdj = C’; xdata = 0; ydata = 0;

36 [xdata , ydata] = AdjustedAngle(H_f , H_s , ’C’);

37 for i=1:n;

38 [c index] = min(abs(C(i,1)-xdata));

39 angleAdj(i) = ydata(index);

40 end

41 for i =1:n;

42 for j=1:m;

43 if mod(j,2) ==0;

44 E(j,i)=X(i+n*(j-1),a);

45 else

46 E(j,i)=X(n+1-i+n*(j-1),a);

47 end

48 if j ==1 && E(j,i)

49 elseif j > 1 && E(j,i) > r*E(j-1,i)

50 E(j,i) = E(j-1,i);

51 end

52 l = l+1;

53 end

54 D(i,1) = sum(E(:,i))/l;
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55 % D1(i,1)=sum(E1(:,i))/l;

56 % D2(i,1)=sum(E2(:,i))/l;

57 l=0;

58 end

59 % angleAdj (1:80) = []; D(1:80) = []; C(1:80) = [];

60 if a == 9||a == 10;

61 figure (1)

62 plot(angleAdj ’, D)

63 % subplot(2,1,kl)

64 % plot(angleAdj ’,D1)

65 % hold on

66 % plot(angleAdj ’,D2)

67 % xlabel (’Magnetic field (T)’)

68 % ylabel (’R^{2w}(V/A^{2}) ’)

69 if b == 1

70 [fitresult , gof] = localFit2w(angleAdj , D);

71 end

72 elseif a==7||a==8

73 figure (1)

74 plot(angleAdj ’,D)

75 if b == 1

76 [fitresult , gof] = localFit2w(angleAdj , D);

77 end

78 elseif a==5||a==6

79 figure (1)

80 plot(angleAdj ’,D)

81 elseif a==3||a==4

82 figure (1)

83 plot(angleAdj ’, D)

84 % subplot(2,1,kl)

85 % plot(angleAdj ’,D1)

86 % hold on

87 % plot(angleAdj ’,D2)

88 % xlabel (’Magnetic field (T)’)

89 % ylabel (’R^{2w}(V/A^{2}) ’)

90 if b == 1

91 [fitresult , gof , xresi , yresi] = data27Fit1walt(angleAdj , D);

92 end

93 end

94 if b == 2

95 for i = 1:9

96 sinus = sprintf(’sin%d’,i);

97 figure (2)

98 f = fit(angleAdj ’,D,sinus);

99 subplot(3,3,i)

100 plot(f,angleAdj ’,D,’Residuals ’)

101 title(sprintf(’Residual of %d sine functions used to fit’,i))

102 end

103 end

104 % D = 0;

105 if b == 0;

106 xresi = C;

107 yresi = D;

108 end

109 % figure (4)
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110 % subplot (3,3,i)

111 % plot(f)

112 % title(sprintf(’%d th sine functions used to fit ’,i))

113

114 end

1 function [xnew , ynew] = AdjustedAngle(MagField , Saturization , x)

2 syms y;

3 eqn = 0.5* sin(2*y)== MagField/Saturization*sin(x-y);

4 figure (10)

5 eh = ezplot(eqn);

6 legend(’psi vs. theta’, ’Location ’, ’NorthEast ’ );

7 % Label axes

8 xlabel (’Angle of H wrt sample (theta)(rad)’)

9 ylabel (’Angle of M wrt to sample (psi)(rad)’)

10 grid on

11 xdata = eh.ContourMatrix (1 ,2:501);%for mostly linear (y=x) plots

12 ydata = eh.ContourMatrix (2 ,2:501);%for mostly linear (y=x) plots

13 %if plot is not (y=x) then the xdata and ydata need to be constructed

14 %manually once

15 set(groot ,’defaultAxesColorOrder ’ ,[0 0 1;0 1 0;0 0 1],...

16 ’defaultAxesLineStyleOrder ’,’ -|--|:’)

17 xnew=interp1(xdata ,1:(499/(360*10 -1)):numel(xdata));%chosen to be 10 times bigger

than the measurement dataset

18 ynew=interp1(ydata ,1:(499/(360*10 -1)):numel(ydata));%chosen to be 10 times bigger

than the measurement dataset

19 figure (1)

20 plot(xnew ,ynew)

21 %h = gcf; %current figure handle

22 %axesObjs = get(h, ’Children ’);

23 %dataObjs = get(axesObjs , ’Children ’);

24 %objTypes = get(dataObjs , ’Type ’);

25 %xdata = get(dataObjs , ’Xdata ’);

26 %ydata = get(dataObjs , ’Ydata ’);

27 %zdata = get(dataObjs , ’Zdata ’);

28 end

1 function [fitresult , gof , xresi , yresi] = data27Fit1w(angleAdj , D)

2 %CREATEFIT(ANGLEADJ ,D)

3 % Create a fit.

4 %

5 % Data for ’untitled fit 1’ fit:

6 % X Input : angleAdj

7 % Y Output: D

8 % Output:

9 % fitresult : a fit object representing the fit.

10 % gof : structure with goodness -of fit info.

11 %

12 % See also FIT , CFIT , SFIT.

13

14 % Auto -generated by MATLAB on 13-May -2016 16:16:59

15

16

17 %% Fit: ’untitled fit 1’.

18 [xData , yData] = prepareCurveData( angleAdj , D );
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19

20 % Set up fittype and options.

21 ft = fittype( ’a*sin((x+c)/b)+d’, ’independent ’, ’x’, ’dependent ’, ’y’ );

22 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

23 opts.Display = ’Off’;

24 opts.Robust = ’Bisquare ’;

25 opts.StartPoint = [0.0025 0.5 0.7655 0.795199901137063];

26

27 % Fit model to data.

28 [fitresult , gof] = fit( xData , yData , ft , opts )

29

30 % Create a figure for the plots.

31 figure( ’Name’, ’45 degree out of plane first harmonic ’ );

32

33 % Plot fit with data.

34 subplot( 2, 2, 1 );

35 h = plot( fitresult , xData , yData );

36 legend( h, ’R^{1w}(Ohm) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

37 % Label axes

38 xlabel (’Angle (rad)’)

39 ylabel (’R^{1w}(Ohm)’)

40 grid on

41

42 % Plot residuals.

43 figure (3);

44 h = plot( fitresult , xData , yData , ’residuals ’ );

45 legend( h, ’untitled fit 1 - residuals ’, ’Zero Line’, ’Location ’, ’NorthEast ’ );

46 % Label axes

47 xlabel angleAdj

48 ylabel D

49 grid on

50

51 h = findobj(gca ,’type’,’line’);

52 xresi = h(2,1).XData;

53 yresi = h(2,1).YData;

54 %xresi=interp1(xdata ,1:(499/(360*10 -1)):numel(xdata));% chosen to be 10 times

bigger than the measurement dataset

55 %yresi=interp1(ydata ,1:(499/(360*10 -1)):numel(ydata));% chosen to be 10 times

bigger than the measurement dataset

56

57 %% Fit: ’untitled fit 1’.

58 [xData , yData] = prepareCurveData( xresi , yresi );

59

60 % Set up fittype and options.

61 ft = fittype( ’sin1’ );

62 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

63 opts.Display = ’Off’;

64 opts.Lower = [-Inf 0 -Inf];

65 opts.StartPoint = [0.000392386560968527 1.1*3.73990445985865 0.75];

66

67 % Fit model to data.

68 [fitresult , gof] = fit( xData , yData , ft , opts )

69

70 % Create a figure for the plots.

71 %figure( ’Name ’, ’untitled fit 1’ );
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72 figure (2);

73 % Plot fit with data.

74 subplot( 2, 2, 2 );

75 h = plot( fitresult , xData , yData );

76 legend( h, ’R^{1w}(Ohm) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

77 % Label axes

78 xlabel (’Angle (rad)’)

79 ylabel (’R^{1w}(Ohm)’)

80 grid on

81

82 % Plot residuals.

83 figure (3);

84 h = plot( fitresult , xData , yData , ’residuals ’ );

85 legend( h, ’untitled fit 1 - residuals ’, ’Zero Line’, ’Location ’, ’NorthEast ’ );

86 % Label axes

87 xlabel xresi

88 ylabel yresi

89 grid on

90

91 h = findobj(gca ,’type’,’line’);

92 xresi = h(2,1).XData;

93 yresi = h(2,1).YData;

94 %xresi=interp1(xdata ,1:(499/(360*10 -1)):numel(xdata));% chosen to be 10 times

bigger than the measurement dataset

95 %yresi=interp1(ydata ,1:(499/(360*10 -1)):numel(ydata));% chosen to be 10 times

bigger than the m

96

97

98 %% Fit: ’untitled fit 1’.

99 [xData , yData] = prepareCurveData( xresi , yresi );

100

101 % Set up fittype and options.

102 ft = fittype( ’sin1’ );

103 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

104 opts.Display = ’Off’;

105 opts.Lower = [-Inf 0 -Inf];

106 opts.StartPoint = [0.000242239512364485 6 1.79556634724802];

107

108 % Fit model to data.

109 [fitresult , gof] = fit( xData , yData , ft , opts )

110

111 % Create a figure for the plots.

112 figure (2);

113

114 % Plot fit with data.

115 subplot( 2, 2, 3 );

116 h = plot( fitresult , xData , yData );

117 legend( h, ’R^{1w}(Ohm) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

118 % Label axes

119 xlabel (’Angle (rad)’)

120 ylabel (’R^{1w}(Ohm)’)

121 grid on

122

123 % Plot residuals.

124 figure (3);
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125 h = plot( fitresult , xData , yData , ’residuals ’ );

126 legend( h, ’R^{1w} vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

127 % Label axes

128 xlabel (’Angle (rad)’)

129 ylabel (’R^{1w}’)

130 grid on

131

132 h = findobj(gca ,’type’,’line’);

133 xresi = h(2,1).XData;

134 yresi = h(2,1).YData;

135

136 %% Fit: ’untitled fit 1’.

137 [xData , yData] = prepareCurveData( xresi , yresi );

138

139 % Set up fittype and options.

140 ft = fittype( ’sin1’ );

141 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

142 opts.Display = ’Off’;

143 opts.Lower = [-Inf 0 -Inf];

144 opts.StartPoint = [0.000245253692045473 8 1.82366636175505];

145

146 % Fit model to data.

147 [fitresult , gof] = fit( xData , yData , ft , opts )

148

149 % Plot fit with data.

150 figure (2);

151 subplot( 2, 2, 4 );

152 h = plot( fitresult , xData , yData );

153 legend( h, ’R^{1w}(Ohm) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

154 % Label axes

155 xlabel (’Angle (rad)’)

156 ylabel (’R^{1w}(Ohm)’)

157 grid on

158 return

1 function [fitresult , gof , xresi , yresi] = data27Fit2w(angleAdj , D)

2 %CREATEFIT(ANGLEADJ ,D)

3 % Create a fit.

4 %

5 % Data for ’untitled fit 3’ fit:

6 % X Input : angleAdj

7 % Y Output: D

8 % Output:

9 % fitresult : a fit object representing the fit.

10 % gof : structure with goodness -of fit info.

11 %

12 % See also FIT , CFIT , SFIT.

13

14 % Auto -generated by MATLAB on 15-May -2016 16:33:46

15

16

17 %% Fit: ’untitled fit 3’.

18 [xData , yData] = prepareCurveData( angleAdj , D );

19

20 % Set up fittype and options.



Contents 61

21 ft = fittype( ’a*sin((x+c)/b)+d’, ’independent ’, ’x’, ’dependent ’, ’y’ );

22 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

23 opts.Display = ’Off’;

24 opts.Robust = ’Bisquare ’;

25 opts.StartPoint = [29 1 -1.45692520213929 -15];

26

27 % Fit model to data.

28 [fitresult , gof] = fit( xData , yData , ft , opts )

29

30 % Create a figure for the plots.

31 figure( ’Name’, ’90 degree out of plane second harmonic ’ );

32

33 % Plot fit with data.

34 subplot( 2, 2, 1 );

35 h = plot( fitresult , xData , yData );

36 legend( h, ’R^{2w}(V/A^{2}) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

37 % Label axes

38 xlabel (’Angle (rad)’)

39 ylabel (’R^{2w}(V/A^{2}) ’)

40 grid on

41

42 % Plot residuals.

43 figure (3);

44 h = plot( fitresult , xData , yData , ’residuals ’ );

45 legend( h, ’untitled fit 3 - residuals ’, ’Zero Line’, ’Location ’, ’NorthEast ’ );

46 % Label axes

47 xlabel angleAdj

48 ylabel D

49 grid on

50

51 h = findobj(gca ,’type’,’line’);

52 xresi = h(2,1).XData;

53 yresi = h(2,1).YData;

54

55 %% Fit: ’untitled fit 3’.

56 [xData , yData] = prepareCurveData( xresi , yresi );

57

58 % Set up fittype and options.

59 ft = fittype( ’sin1’ );

60 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

61 opts.Display = ’Off’;

62 opts.Lower = [-Inf 0 -Inf];

63 opts.StartPoint = [4 3 1.89207008846993];

64

65 % Fit model to data.

66 [fitresult , gof] = fit( xData , yData , ft , opts )

67

68 % Create a figure for the plots.

69 figure (2);

70

71 % Plot fit with data.

72 subplot( 2, 2, 2 );

73 h = plot( fitresult , xData , yData );

74 legend( h, ’R^{2w}(V/A^{2}) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

75 % Label axes
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76 xlabel (’Angle (rad)’)

77 ylabel (’R^{2w}(V/A^{2}) ’)

78 grid on

79

80 % Plot residuals.

81 figure (3);

82 h = plot( fitresult , xData , yData , ’residuals ’ );

83 legend( h, ’untitled fit 3 - residuals ’, ’Zero Line’, ’Location ’, ’NorthEast ’ );

84 % Label axes

85 xlabel xresi

86 ylabel yresi

87 grid on

88

89 h = findobj(gca ,’type’,’line’);

90 xresi = h(2,1).XData;

91 yresi = h(2,1).YData;

92

93 %% Fit: ’untitled fit 3’.

94 [xData , yData] = prepareCurveData( xresi , yresi );

95

96 % Set up fittype and options.

97 ft = fittype( ’sin1’ );

98 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

99 opts.Display = ’Off’;

100 opts.Lower = [-Inf 0 -Inf];

101 opts.StartPoint = [1.80043160528997 5 -1.58933733156476];

102

103 % Fit model to data.

104 [fitresult , gof] = fit( xData , yData , ft , opts )

105

106 % Create a figure for the plots.

107 figure (2);

108

109 % Plot fit with data.

110 subplot( 2, 2, 3 );

111 h = plot( fitresult , xData , yData );

112 legend( h, ’R^{2w}(V/A^{2}) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

113 % Label axes

114 xlabel (’Angle (rad)’)

115 ylabel (’R^{2w}(V/A^{2})’)

116 grid on

117

118 % Plot residuals.

119 figure (3);

120 h = plot( fitresult , xData , yData , ’residuals ’ );

121 legend( h, ’untitled fit 3 - residuals ’, ’Zero Line’, ’Location ’, ’NorthEast ’ );

122 % Label axes

123 xlabel xresi

124 ylabel yresi

125 grid on

126

127 h = findobj(gca ,’type’,’line’);

128 xresi = h(2,1).XData;

129 yresi = h(2,1).YData;

130
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131 %% Fit: ’untitled fit 3’.

132 [xData , yData] = prepareCurveData( xresi , yresi );

133

134 % Set up fittype and options.

135 ft = fittype( ’sin1’ );

136 opts = fitoptions( ’Method ’, ’NonlinearLeastSquares ’ );

137 opts.Display = ’Off’;

138 opts.Lower = [-Inf 0 -Inf];

139 opts.StartPoint = [1.803 7 -1.57248669787394];

140

141 % Fit model to data.

142 [fitresult , gof] = fit( xData , yData , ft , opts )

143 figure (2);

144 subplot (2,2,4);

145 % Plot fit with data.

146 h = plot( fitresult , xData , yData );

147 legend( h, ’R^{2w}(V/A^{2}) vs. Angle (rad)’, ’fit’, ’Location ’, ’NorthEast ’ );

148 % Label axes

149 xlabel (’Angle (rad)’)

150 ylabel (’R^{2w}(V/A^{2}) ’)

151 grid on
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