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PREFACE

There are some things that only manga can do.

You have just picked up and opened this book. You must be
one of the following types of people.

The first type is someone who just loves manga and thinks,
“Calculus illustrated with manga? Awesome!” If you are this type
of person, you should immediately take this book to the cashier—
you won't regret it. This is a very enjoyable manga title. It's no
surprise—Shin Togami, a popular manga artist, drew the manga,
and Becom Ltd., a real manga production company, wrote the
scenario.

“But, manga that teaches about math has never been very
enjoyable,” you may argue. That’s true. In fact, when an editor at
Ohmsha asked me to write this book, I nearly turned down the
opportunity. Many of the so-called “manga for education” books
are quite disappointing. They may have lots of illustrations and
large pictures, but they aren't really manga. But after seeing a
sample from Ohmsha (it was The Manga Guide to Statistics), I
totally changed my mind. Unlike many such manga guides, the
sample was enjoyable enough to actually read. The editor told me
that my book would be like this, too—so I accepted his offer. In
fact, I have often thought that I might be able to teach mathemat-
ics better by using manga, so I saw this as a good opportunity to
put the idea into practice. I guarantee you that the bigger manga
freak you are, the more you will enjoy this book. So, what are you
waiting for? Take it up to the cashier and buy it already!

Now, the second type of person is someone who picked up this
book thinking, “Although I am terrible at and/or allergic to calcu-
lus, manga may help me understand it.” If you are this type of per-
son, then this is also the book for you. It is equipped with various
rehabilitation methods for those who have been hurt by calculus
in the past. Not only does it explain calculus using manga, but
the way it explains calculus is fundamentally different from the
method used in conventional textbooks. First, the book repeatedly



Xl PREFACE

presents the notion of what calculus really does. You will never
understand this through the teaching methods that stick to limits
(or &-3 logic). Unless you have a clear image of what calculus really
does and why it is useful in the world, you will never really under-
stand or use it freely. You will simply fall into a miserable state of
memorizing formulas and rules. This book explains all the formu-
las based on the concept of the first-order approximation, helping
you to visualize the meaning of formulas and understand them
easily. Because of this unique teaching method, you can quickly
and easily proceed from differentiation to integration. Further-
more, I have adopted an original method, which is not described in
ordinary textbooks, of explaining the differentiation and integra-
tion of trigonometric and exponential functions—usually, this is
all Greek to many people even after repeated explanations. This
book also goes further in depth than existing manga books on
calculus do, explaining even Taylor expansions and partial dif-
ferentiation. Finally, I have invited three regular customers of
calculus—physics, statistics, and economics—to be part of this
book and presented many examples to show that calculus is truly
practical. With all of these devices, you will come to view calculus
not as a hardship, but as a useful tool.

I would like to emphasize again: All of this has been made
possible because of manga. Why can you gain more information
by reading a manga book than by reading a novel? It is because
manga is visual data presented as animation. Calculus is a branch
of mathematics that describes dynamic phenomena—thus, calcu-
lus is a perfect concept to teach with manga. Now, turn the pages
and enjoy a beautiful integration of manga and mathematics.

HIROYUKI KOJIMA
NOVEMBER 2005

NOTE: For ease of understanding, some figures are not drawn
to scale.



PROLOGUE:
WHAT IS A FUNCTION?




THE ASAGAKE
TIMES'S SANDA-CHO
OFFICE MUST BE
AROUND HERE.

JUST THINK—ME,
NORIKO HIKIMA, A
JOURNALIST! MY
CAREER STARTS
HERE!

TLL WORK

IT'6 A SMALL HARD!!

NEWSPAPER AND

JUST A BRANCH

OFFICE. BUT I'M
STILL A JOURNALIST!

VRN

Z PROLOGUE



THE ASAGAKE TIMES
SANDA-CHO DISTRIBUTOR

A NEWSPAPER SANDA-CHO OFFICE...
DISTRIBUTOR? DO 1 HAVE THE
WRONG MAP?

YOU'RE LOOKING \

IT'S NEXT FOR THE SANDA-CHO

POOR. BRANCH OFFICE?
EVERYBODY MISTAKES

US FOR THE OFFICE

BECAUSE WE ARE

LARGER.

WHAT IS A FUNCTION? 3
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THE ASAGAKE TIMES
SANDA-CHO BRANCH OFFICE
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WHOOSH

OH, NO!!
IT'S A PREFAB!

DON'T...PON'T GET
UPSET, NORIKO.

4 PROLOGUE

ASAGAKE TIMES.

IT'S A BRANCH
OFFICE, BUT IT'S
STILL THE REAL
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MORNING

LUNCH
DELIVERY?

!

e
G

HERE GOES
NOTHIN

WHAT IS A FUNCTION? 5



WILL YOU
LEAVE IT,
PLEASE?

WAIT, WHAT?

OH, YOU HAVE
BEEN ASSIGNED
HERE TODAY.

I'M NORIKO
HIKIMA.

& PROLOGUE

LONG TRIF,
WASN'T IT? IM
KAKERU SEKI, THE
HEAD OF THIS
OFFICE.

THE BIG GUY THERE
IS FUTOSHI MASU,
MY ONLY SOLDIER.




THINKING...?
YES! THINKING

ABOUT FACTS.

THIS 1S A GOOD
PLACE. A PERFECT
ENVIRONMENT FOR
THINKING ABOUT

A FACT IS SOMEHOW
RELATED TO
ANOTHER FACT.

UNLESS YOU UNDERSTAND
THESE RELATIONSHIPS,
YOU WON'T BE A REAL

REPORTER.

TRUE JOURNALISM!!

WHAT IS A FUNCTIONT 7



WELL, YOU
MAJORED IN THE
HUMANITIES.

YOU HAVE A LOT OF
CATCHING UP TO DO,
THEN. LET'S BEGIN
WITH FUNCTIONS.

5= MATH? WHAT?

YES! THAT'S
TRUE-T'VE STUDIED
LITERATURE SINCE
I WAS A JUNIOR IN
HIGH SCHOOL.

FU...FUNCTIONS?

WHEN ONE THING
CHANGES, IT INFLUENCES
ANOTHER THING.

A FUNCTION IS A

CORRELATION. YOU CAN THINK OF

THE WORLD ITSELF AS
ONE BIG FUNCTION.

A FUNCTION DESCRIBES A
RELATION, CAUSALITY, OR

CHANGE.
<

AS JOURNALISTS,
OUR JOB IS TO FIND
THE REASON WHY
THINGS HAPPEN—
THE CAUSALITY.
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NOPE!!

H||,|‘ m

DID YOU KNOW A
FUNCTION 1S OFTEN
EXPRESSED AS

FOR EXAMPLE,
ASSUME x
AND y ARE

ANIMALS.

Animal x

Animal y

ASSUME x IS A FROG. IF

YOU PUT THE FROG INTO

BOX f AND CONVERT IT,

TAPPOLE y COMES OUT
OF THE BOX.

BUT, UH...
WHAT 15 f?

THE f STANDS FOR
FUNCTION, NATURALLY.

unction

S 15 USED TO SHOW THAT
THE VARIABLE y HAS A
PARTICULAR RELATIONSHIP
TO x.

AND WE CAN
ACTUALLY USE ANY
LETTER INSTEAD

OF f.

WHAT 15 A FUNCTION? Q



IN THIS CASE, f
EXPRESSES THE
RELATIONSHIP

& o

AND THIS

A PARENT

OR RULE
BETWEEN
“A PARENT”
AND “AN

AN OFFSPRING

RELATIONSHIP 15
TRUE OF ALMOST
ANY ANIMAL. IF x
15 ABIRD, y IS A
CHICK.

OKAY! NOW
LOOK AT THIS.

Iy

Ll

,45/,?;%;(‘.’ /

FOR EXAMPLE,

THE RELATIONSHIP
BETWEEN INCOMES
AND EXPENDITURES
CAN BE SEEN AS A

FUNCTION. LIKE HOW WHEN

THE SALES AT A
COMPANY GO UP,
THE EMPLOYEES
GET BONUSES?

A\
ALY
FELLLAATEIAA
pit i
PR LA TETE AT W
iy “u\‘\n‘\\\ u \ \ ‘\||.I‘l\ \\l\“‘“\‘\\“\\\‘\:\:“\.\‘\ |‘| ‘\‘\“
1 1 At
,|“..|\\.‘|‘\\\\“‘ AN ““““:‘"\'\'\'\‘\‘\\“.‘-““‘
PERLLARREELAR T \! Nt
LA TR AR
AALLLL VARG
1
L)

...........

THE SPEED OF SOUND
AND THE TEMPERATURE
CAN ALSO BE EXPRESSED
AS A FUNCTION. WHEN
THE TEMPERATURE GOES
UP BY 1°C, THE SPEED
OF SOUND GOES UP BY
0.6 METERS/SECOND,

AND THE
TEMPERATURE IN THE
MOUNTAINS GOES
DOWN BY ABOUT
0.5°C EACH TIME YOU
GO UP 100 METERS,

DOESN'T IT?

10 PROLOGUE



DO YOU GET IT? WE
ARE SURROUNDED BY
FUNCTIONS.

1 SEE WHAT
YOU MEAN!

WE HAVE PLENTY
OF TIME HERE TO
THINK ABOUT THESE

THINGS QUIETLY.

THE THINGS YOU
THINK ABOUT HERE
MAY BECOME USEFUL

SOMEDAY.

BEST.

ITS A SMALL
OFFICE, BUT 1 HOPE
YOU WILL PO YOUR

_ :
‘ L )

WHAT IS A FUNCTION? 1




ARE YOU ALL
RIGHT?

OH, LUNCH 15 HERE
ALREADY? WHERE |5 MY
BEEF BOWL?

FUTOSHI, LUNCH
HASN'T COME
YET. THIS 15...

NOT YET? PLEASE
WAKE ME UP WHEN
LUNCH 15 HERE.

) NO, FUTOSH),
WE HAVE A
NEW...

12 PROLOGUE

HAS LUNCH
COME?

NO, NOT YET.




TABLE 1: CHARACTERISTICS OF FUNCTIONS

SUBJECT CALCULATION GRAPH
Causality The frequency of a cricket’s chirp is When we graph these
determined by temperature. We can functions, the result is
express the relationship between a straight line. That's
y chirps per minute of a cricket at why we call them linear
temperature x°C approximately as functions.
y=g(x)=7x-30
‘[ l y A
x=27° 7x27-30
The result is 159 chirps a minute.
Changes The speed of sound y in meters per sec-
ond (m/s) in the air at x°C is expressed as
y=v(x)=0.6x+331
At 15°C,
y=v(15)=0.6x15+331 =340 m/s /
At -5°C, >
0 x
y=v(-5)=0.6x(-5)+331 =328 m/s
Unit Converting x degrees Fahrenheit (°F) into
Conversion y degrees Celsius (°C)

y=f(x)=g(x—32)

So now we know 50°F is equivalent to

2(50—32)=10°c

Computers store numbers using a binary
system (1s and 0s). A binary number with
x bits (or binary digits) has the potential

to store y numbers.

y=b{x)=2"

(This is described in more detail on
page 131.)

The graph is an expo-
nential function.

Yai

117 p—

WHAT IS A FUNCTION? 13



THE GRAPHS OF SOME FUNCTIONS CANNOT BE EXPRESSED
BY STRAIGHT LINES OR CURVES WITH A REGULAR SHAPE.

The stock price P of company A in month x in 2009 is
Yy = Px)

300 {
g
S 200+

100 -
|

1 2 3 4 5 6
Month

P(x) cannot be expressed by a known function, but it is still a function.
If you could find a way to predict P(7), the stock price in July, you could
make a big profit.

COMBINING TWO OR MORE FUNCTIONS 1S CALLED “THE
COMPOSITION OF FUNCTIONS.” COMBINING FUNCTIONS
ALLOWS US TO EXPAND THE RANGE OF CAUSALITY.

A composite function
,/’ of fand g

x—| f|— f)—| g | — glfx)

EXERCISE

1. Find an equation that expresses the frequency of z chirps/minute of a
cricket at x°F.

14 PROLOGUE



DIFFERENTIATE A FUNCTION!




APPROXIMATING WITH FUNCTIONS

ALL RIGHT, IM
PONE FOR THE
DAY.

NORIKO, I HEARD
A POSH ITALIAN
RESTAURANT JUST
OPENED NEARBY.
WOULD YOU LIKE
TO 6O7

WOW! I LOVE
ITALIAN FOOP.
LET'S GO!

BUT..YOU'RE
FINISHED
ALREADY?
IT'S NOT EVEN
NOON.

| —

THIS 1S5 A
BRANCH OFFICE.
WE OPERATE
ON A DIFFERENT
SCHEDULE.

16 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!




TO: EDITy OR‘S
SUBJECT: TOpAY's HEADLINES

A BEAR RAMPAGES |N A HOUSE AGA

THE REPUTATION OF SANDA-,

IMPROVES IN THE PREFECTURE

CHO WATERMELONS

IN=NO INJURIES

DO YOU..pO
YOU ALWAYS
FILE STORIES
LIKE THIS?

LOCAL NEWS LIKE

THIS 1S NOT BAD.

BESIDES, HUMAN-

INTEREST STORIES
CAN BE...

POLITICS, FOREIGN

AFFAIRS, THE
ECONOMY... I WANT TO
COVER THE
HARD-HITTING
155UES! AH..THAT'S
IMPOS5%IBLE.

APPROXIMATING WITH FUNCTIONS 17



IT'S NOT LIKE A
SUMMIT MEETING
WILL BE HELD
AROUND HERE.

NOTHING EXCITING
EVER HAPPENS,

AND TIME GOES

BY VERY SLOWLY.

I KNEW IT.
I DON'T WANNA WORK
HERE!!

NORIKO, YOU CAN
STILL BENEFIT
FROM YOUR
EXPERIENCES

Ly

I DON'T KNOW
WHICH BEAT YOU
WANT TO COVER,

BUT I WILL TRAIN YOU
WELL SO THAT YOU
CAN BE ACCEPTED AT

THE MAIN OFFICE.

18 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



BY THE WAY,
PO YOU THINK
THE JAPANESE

ECONOMY 15 STILL
EXPERIENCING
DEFLATION?

I THINK SO. I FEEL
IT IN MY DAILY LIFE.

ECONOMIC
STIMULUS

2| qunin

THE GOVERNMENT
REPEATEDLY SAID
THAT THE ECONOMY
WOULD RECOVER.

BUT IT TOOK A LONG
TIME UNTIL SIGNS OF
RECOVERY APPEARED.

FPRICES
4\

|

2004 2005

1 HAVE A BAD
FEELING ABOUT
THIS...

A TRUE JOURNALIST
MUST FIRST ASK
HIMSELF, “WHAT DO )

I WANT TO KNOW?” o

APPROXIMATING WITH FUNCTIONS 19



IF YOU CAN APPROXIMATE WHAT
YOU WANT TO KNOW WITH A
SIMPLE FUNCTION, YOU CAN SEE
THE ANSWER MORE CLEARLY.

HERE WE

USE A LINEAR
EXPRESSION: NOW, WHAT WE WANT
y=ax+b TO KNOW MOST IS IF

PRICES ARE GOING
UP OR DOWN.

Turned to inflation

(Prices) y=ax+b
" '
® ®
SO IFals
NEGATIVE, WE KNOW
T%ZP'EE%%T#C?N | | | | | X THAT DEFLATION |5
- STILL CONTINUING.
IN PRICES WITH 2004 2005 2006 erar]
y = ax + b GIVES...
\.\
; /
0 a>0 0 a<0

Still in deflation

Z0 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



THAT'S RIGHT.
YOU ARE A
QUICK STUDY.

NOW, LET'S \
PO THE REST
AT THE ITALIAN

RESTAURANT. /g

[y 2] ]

LET'S GET
OUTTA

, SPEAKING OF SNACKS,
FUTOSHI, WE'RE DO YOU KNOW ABOUT

LEAVING FOR JOHNNY FANTASTIC,
LUNCH. DON'T THE ROCKSTAR WHOSE
EAT TOO MANY BOOK ON DIETING

SNACKS. HAS BECOME A BEST

SELLER? YES.

APPROXIMATING WITH FUNCTIONS 21



BUT HE SUDDENLY
BEGAN TO GAIN
WEIGHT AGAIN
AFTER A BAD
BREAK-UP.

ALTHOUGH HIS MY WEIGHT

AGENT WARNED | | GAN HAS
HM ABOUT IT, / ALREADY
' PASSED ITS

PEAK. _

HE WAS CERTAIN.

JOHNNY'S WEIGHT
GAN |15 REALLY
SLOWING DOWN

WHETHER

LIKE HE SAID.

4

70 o °©

h

NOW WHAT HIS
AGENT WANTS TO
KNOW 15...

@'ze RIGHT. NOW,

LET'S IMITATE HIS

WEI@HT2@AIN WITH

y=ax +bx+c y=ax’ +bx+c

Weight (kg) Weight (kg)

8 9 10 11 12
Days

11 12
Days

22 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!



THERE ARE LOTS
OF TIGHT CURVES
AROUND HERE.

WEIGHT GAIN |5 WEIGHT GAN 15 : :
ACCELERATING. SLOWING DOWN.  “ IF a IS POSITIVE, HIS WEIGHT \
A X GAIN |5 ACCELERATING.
AND IF a IS NEGATIVE, IT'S
SLOWING DOWN.
GOOD!
s > YOU'RE :
as>o a<o DOING WELL. ,@i
EH, I DONT
LET'S ASSUME YOU REALLY CARE

WANT TO KNOW
HOW TIGHT EACH
CURVE 15,

ABOUT THAT.

WE CAN
APPROXIMATE
EACH CURVE WITH
A CIRCLE.

APPROXIMATING WITH FUNCTIONS 23



y=R*-(x-a) +b
(x-a)’ +(y-b)’ =R?
LET'S IMITATE IT WITH THE FORMULA

FOR A CIRCLE WITH RADIUS R
CENTERED AT POINT (a, b)

LOOK. ASSUME THE

CURVATURE OF THE ROAD |5
ON THE CIRCUMFERENCE OF
A CIRCLE WITH RADIUS R

-----

THE SMALLER
R 15, THE
TIGHTER THE
CURVE |5.

Z4 CHAPTER 1 LET'S DIFFERENTIATE A FUNCTION!




WELL, THAT'S THE

ITALIAN RESTAURANT
WE WANT TO GO TO. |
y|

L LT

OH!! I'VE
GOoT AN
IDEA!

IT's STILL 50
FAR AWAY.

LET'S DENOTE
THIS ACCIDENT

SITE WITH
POINT P.

ITALIAN
RESTAURANT

ACCIDENT
SITe

AND LET'S THINK

OF THE ROAD AS
A GRAPH OF THE
FUNCTION f(x) = x>

N

APPROXIMATING WITH FUNCTIONS 25



Italian

y restaurant
ﬁ y=9g[x
Py I
Imitate with
P glx)=4x-4
X) =X :
x=12 X

THE LINEAR FUNCTION THAT
APPROXIMATES THE FUNCTION
fix) = x* (OUR ROAD) AT x=2 IS
g(x) = 4x — 4" THIS EXPRESSION
CAN BE USED TO FIND OUT,
FOR EXAMPLE, THE SLOPE AT
THIS PARTICULAR POINT.

X. Incline at point P

AT POINT P
THE SLOPE RISES
4 KILOMETERS VERTICALLY
FOR EVERY 1 KILOMETER
IT GOES HORIZONTALLY. IN
REALITY, MOST OF THIS ROAD
IS NOT S0 STEEF.

* THE REASON IS GIVEN ON PAGE 34.

FUTOSHI? WE'VE
HAD AN ACCIDENT.
WILL YOU HELP US?

THE ACCIDENT
SITE? IT'S
POINT P.

WHAT FUNCTION
SHOULD I USE TO
APPROXIMATE THE
INSIDE OF YOUR
HEADP?
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3 ] ]g‘ Tﬂ//ii
L 7 £ lrél
T - ;E’-‘ THE RELATIVE ERROR
: " GINES THE RATIO OF THE
““‘" DIFFERENCE BETWEEN THE
WHILE WE WAIT FOR B M, VALUES OF f(x) AND g(x) TO
FUTOSHI, T'LL TELL i THE VARIATION OF x WHEN x

YOU ABOUT RELATIVE
ERROR, WHICH 15

ALSO IMPORTANT. o il

ERROR?

el

CALCULATING THE RELATIVE ERROR

IS CHANGED. THAT 15...

Our
original
function

}

Difference between f(x) and g(x)

Our
approximating
function

!

Relative error =
Change of x

I DON'T CARE
ABOUT RELATIVE
DIFFERENCE. 1
JUST WANT SOME
LUNCH.
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ASSUME THAT x
EQUALS Z AT THE
POINT WHERE WE ARE
NOW AND THAT THE
DISTANCE FROM HERE
TO THE RAMEN SHOP

S T

e -

TOD i s i o

2.1 X
NOW, ASSUME THE POINT
)';5;?05{1“:?5 WHERE I AM STANDING 15
BECOMES x = 2.1. 0.01 FROM P.
[~
2 /
f.=21- 44
ol2.1) < 4x21-4-44
50 THE DIFFERENCE 1S : L ,
f(2.1) - g(2.1) = 0.01, AND THE ' :
RELATIVE ERROR |5 0.01 /0.1 = 3 : .
0.1 (10 PERCENT). = 2200 21 2x
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CHANGE x BY 0.01: x=2
BECOMES x = 2.01.

e<eox. f(g01) (.00 40401~ 404- 0000

RELATIVE ERROR
|
L2001 - 9.9y

THE RELATIVE ERROR

[1%] FOR THIS POINT 15
SMALLER THAN FOR

THE RAMEN SHOP.

IN OTHER WORDS, THE
CLOSER 1 STAND TO
THE ACCIDENT SITE, THE
BETTER g(x) IMITATES f(x).

As the variation approaches 0, the relative error also approaches 0.

Variation of J(x) g(x) Error Relative
x from 2 error
1 9 8 1 100.0%
0.1 4.41 4.4 0.01 10.0%
0.01 4.0401 4.04 0.0001 1.0%
0.001 4.004001 4.004 0.000001 0.1%

i I

| |

\ 4 +

0 0
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GREAT! YOU

THAT'S NOT SO
SURPRISING, IS IT? ALREADY
UNDERSTAND
DERIVATIVES.

50, THE
RESTAURANT BE STRAIGHT WITH YES. TODAY WE WILL
HAVING THE ME! WE'RE GONNA EAT AT THE RAMEN
SMALLEST EAT AT THE RAMEN SHOP, WHICH 15
RELATIVE SHOP, AREN'T WE? CLOSER TO FOINT P.
ERROR 15..

THE RAMEN
SHOP.

THE APPROXIMATE LINEAR FUNCTION |5 SUCH THAT ITS
RELATIVE ERROR WITH RESPECT TO THE ORIGINAL
FUNCTION 15 LOCALLY ZERO.

50, AS LONG AS LOCAL PROPERTIES ARE CONCERNED,

WE CAN DERIVE THE CORRECT RESULT BY USING THE

APPROXIMATE LINEAR FUNCTION FOR THE ORIGINAL
FUNCTION.

SEE PAGE 39 FOR THE DETAILED CALCULATION.
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RAMEN SANDA

WHY 1S FUTOSHI
EATING SO MUCH?
HE JUST CAME TO
RESCUE US.

SIGH. I LIKE RAMEN,
BUT I WANTED TO EAT
ITALIAN FOOD.

NORIKO, WE CAN ALSO
ESTIMATE THE COST-
EFFECTIVENESS OF
TV COMMERCIALS
USING APPROXIMATE
FUNCTIONS.
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THE DERIVATIVE IN ACTION!

LET'S CONSIDER
WHETHER ONE OF
THEIR EXECUTIVES
INCREASED OR
PECREASED THE AIRTIME
OF THE COMPANY'S TV

YOU KNOW THE &

BEVERAGE COMMERCIAL TO RAISE
MANUFACTURER THE PROFIT FROM ITS
AMALGAMATED POPULAR PRODUCTS.

COLA?
OKAY, 1 GUESS. WHEN I WORKED AT \ ILL DO ITI I WILL
THE MAIN OFFICE, ONLY \ WORK HARD.
ONE MAN SOLVED THIS PLEASE TELL ME
PROBLEM. HE IS NOW A THE STORY.
HIGH-POWERED...

YOU KNOW...

ASSUME AMALGAMATED COLA
AIRS ITS TV COMMERCIAL x
HOURS PER MONTH.

IT IS KNOWN THAT THE PROFIT
FROM INCREASED SALES DUE TO
x HOURS OF COMMERCIALS 1S

f(x) =20vx
(IN HUNDREDS OF MILLION YEN).

2ex
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AMALGAMATED COLA
NOW AIRS THE TV
COMMERCIAL FOR

4 HOURS PER MONTH.

AND SINCE
f(4)=20V4 = 40, THE
COMPANY MAKES A PROFIT
OF 4 BILLION YEN.

1-MINUTE COMMERCIAL =

THE FEE FOR THE 10 MILLION

TV COMMERCIAL |15
10 MILLION YEN PER
MINUTE.

f(x) =20v/x HUNDRED MILLION YEN

1-MIN COMMERCIAL = ¥10 MILLION

NOW, A NEWLY
APPOINTED EXECUTIVE
HAS DECIDED TO
RECONSIDER THE
AIRTIME OF THE TV
COMMERCIAL. DO YOU
THINK HE WILL INCREASE

THE AIRTIME OR
DECREASE IT?
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= SINCE IT'S IMPOSSIBLE

TO IMITATE THE WHOLE
FUNCTION WITH A LINEAR
FUNCTION, WE WILL
L= 1 IMITATE IT IN THE VICINITY
HUNDRED MILLION YEN OF THE glf’fiNi AIRTIME

SINCE f(x)=20x
HUNDRED MILLION YEN
IS A COMPLICATED
FUNCTION, LET'S
MAKE A SIMILAR
LINEAR FUNCTION TO
ROUGHLY ESTIMATE
THE RESLULT,

IMITATE

STEP 2

WE WILL DRAW A
TANGENT LINE® TO
THE GRAFPH OF

flx)=20x
AT POINT (4, 40).

?::V

* Here is the calculation of the tangent line. (See also the explanation of the
derivative on page 39.)

For f(x)=20+/x, f(4) is given as follows.

f(4+g)—f(4)720\/m,20x2_20(\/4+a —2)><(v'4+£ +2)
B g - sx(\/4+£+2)

€

4+5-4 20

:208(\/4+8 +2):\/4+£ +2

When ¢ approaches 0, the denominator of @ V4 +¢ +2 — 4,
Therefore, @ — 20 + 4 = 5.
Thus, the approximate linear function g(x)=5(x - 4) + 40 =5x + 20
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IF THE CHANGE IN x |15
LARGE —FOR EXAMPLE, AN
HOUR—THEN g(x) DIFFERS
FROM f(x) TOO MUCH AND OF, FOR EXAMPLE,

CANNOT BE USED. \,4‘ . 6 MINUTES (0.1 HOUR),
IN REALITY, THE CHANGE - 2 THIS APPROXIMATION
IN AIRTIME OF THE TV ! CAN BE USED, BECAUSE

IF YOU CONSIDER AN
INCREASE OR DECREASE

COMMERCIAL MUST ONLY THE RELATIVE ERROR
BE A SMALL AMOUNT, IS SMALL WHEN THE
EITHER AN INCREASE OR A CHANGE IN x 1S SMALL.
DECREASE.,

WE FIND THAT
IN THE VICINITY OF x = 4 AN INCREASE OF
HOURS, f(x) CAN BE SAFELY & MINUTES BRINGS

APPROXIMATED AS ROUGHLY A PROFIT INCREASE
OF ABOUT 5 X O.1 =
0.5 HUNDRED MILLION
YEN.

g(x) = bx + 20.

THE FACT THAT THE
COEFFICIENT OF x IN g(x) 15
5 MEANS A PROFIT INCREASE
OF 5 HUNDRED MILLION YEN E%Tﬂrlgngg:gg
PER HOUR. 50 |IF THE CHANGE THE AIRTIME OF THE
1S ONLY & MINUTES (0.1 HOUR), COMMERCIAL BY
THEN WHAT HAPPENS? & MINUTES?

THAT'S RIGHT. BUT,

IF, INSTEAD, THE AIRTIME
IS PECREASED BY
& MINUTES, THE PROFIT
DECREASES ABOUT
0.5 BILLION YEN. BUT
SINCE YOU DON'T HAVE
TO PAY THE FEE OF
0.6 HUNDPRED MILLION
) YEN...

THE FEE FOR THE
INCREASE |15 6 X O\
0.6 HUNDRED
MILLION YEN.
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THE ANSWER |5..THE COMPANY
DECIDED TO DECREASE THE
COMMERCIAL TIME!

CORRECT!

PEOFLE USE FUNCTIONS
TO SOLVE PROBLEMS
IN BUSINESS AND LIFE IN

THE REAL WORLD.

THAT'S TRUE
WHETHER THEY ARE
CONSCIOUS OF
@  FUNCTIONS OR NOT.

)

BY THE WAY, WHO 1S THE
MAN THAT SOLVED THIS
PROBLEM?
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OH, IT WAS FUTOSHI.

BUT YOU
SAID HE WAS
HIGH-FOWERED,
DIDN'T YOU?

HE /5 A HIGH-
POWERED
BRANCH-OFFICE

JOURNALIST.

AS 1 EXPECTED..SOLVING
MATH PROBLEMS HAS
NOTHING TO PO WITH

BEING A HIGH-POWERED

JOURNALIST.

N

THE DERIVATIVE IN ACTION!
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THIS 15 ABSURD!
I WON'T GIVE UP!

Y

\ LUNCHTIME 15 OVER.
| LETS FIX THE CARY

;

FUTOSHI, LIFT THE I DON'T THINK
CAR UP MORE! THIS HAS
YOU'RE A HIGH- ANYTHING TO PO

POWERED BRANCH- WITH BEING A
OFFICE JOURNALIST, JOURNALIST...

AREN'T YOU?
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CALCULATING THE DERIVATIVE

Let’s find the imitating linear function g(x) = kx + [ of function f(x) at x = a.
We need to find slope k.

0 g(x)=k(x-a)+f(a) (g(x) coincides with f(a) when x = a.)

Now, let's calculate the relative error when x changes from x = a to
X=a+é.

Difference between fand g after x has changed

Relative error =
Change of x from x=a

fla+e)-g(a+e)

=~

gla+e)=k(a+e-a)+ f(a)

fla+e)-(ke+ f(a)) =ke + f(a)

= : ‘

When ¢ approaches 0,

_ Sfla+e)-f(a) Tk .0 the relative error also
e = approaches 0. |
a+eg)-f(a )

e = lim M f(a+e)- f(a) approaches k

¢ when ¢ - 0.

&

J

(The lim notation expresses the operation that obtains the value when ¢
approaches 0.)

Linear function @, or g(x), with this k, is an approximate function of f(x).

ke is called the differential coefficient of f(x) at x = a.

. f(a+¢e)- f(a) Slope of the line tangent to y = f(x) at
s —f L0 .
£—0 £ any point (a, f(a)).

We make symbol f' by attaching a prime to f.

.. Sflate)-f(a)  f'(a) is the slope of the line tangent to
f(a)-lﬂ'}—g“— y =flx)atx = a.

Letter a can be replaced with x.
Since f' can been seen as a function of x, it is called “the function
derived from function f,” or the derivative of function f.
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CALCULATING THE DERIVATIVE OF A CONSTANT, LINEAR, OR QUADRATIC
FUNCTION

1. Let’s find the derivative of constant function f(x) = a. The differential
coefficient of f(x) at x=a is

g SOy B8 oo
£—0 g £—0 £ £—0

Thus, the derivative of f(x) is f'(x) = 0. This makes sense, since our
function is constant—the rate of change is 0.

NoTe The differential coefficient of f(x) at x = a is often simply called the
derivative of f(x) at x = a, or just f'(a).

2. Let’s calculate the derivative of linear function f(x) = ax + . The deriva-
tive of f(x) at x = a is

lim’f(a +g)- f(a) =Iima(a+8)+ﬁ_(aa+ﬁ):linola:a
£—0 £, e—0 & L

Thus, the derivative of f(x) is f(x) = «, a constant value. This result
should also be intuitive—linear functions have a constant rate of change
by definition.

3. Let’s find the derivative of f(x) = x°, which appeared in the story. The dif-
ferential coefficient of f(x) at x = a is

_ 2 2 2
limf(a+£) f(a)=lim(a+£) = =lim2as+8 =1im(2a+8):2a
£—0 & £e—0 & e—0 & £—=0

Thus, the differential coefficient of f(x) at x = a is 2a, or f(a) = 2a.
Therefore, the derivative of f(x) is _f'(x) = 2x.

SUMMARY

* The calculation of a limit that appears in calculus is simply a formula
calculating an error.

* Alimit is used to obtain a derivative.
- The derivative is the slope of the tangent line at a given point.
* The derivative is nothing but the rate of change.
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The derivative of f(x) at x = a is calculated by

limf(a+g)—f(a)

£—=0 =

g(x) = f(a) (x — a) + f(a) is then the approximate linear function of f(x).

f'(x), which expresses the slope of the line tangent to f(x) at the point
(x, f(x)), is called the derivative of f(x), because it is derived from f(x).

Other than f(x), the following symbols are also used to denote the
derivative of y = f(x).

, dy df

d
i de' e

EXERCISES

1. We have function f(x) and linear function g(x) = 8x + 10. It is known
that the relative error of the two functions approaches 0 when x
approaches 5.

A.  Obtain f(5).
B. Obtain f/5).

z. For f(x) = x°, obtain its derivative f'(x).

EXERCISES 41



LET'S LEARN DIFFERENTIATION
TECHNIQUES!




Criminal Charges
P Brought Against
& Megatrox
2% Construction Contract
Violates Antitrust Laws

I

WOW! MEGATROX 15 A
HUGE COMPANY!

y//\//ﬂ//%///////

i

THIS 1S A GREAT
SCOOF, ISN'T IT?
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OF COURSE!

1 SUPPOSE YOU
WANT TO WRITE A BIG
STORY SOMEDAY?

NOPE, NOT
YOU TWO MUST ,
HAVE GOT SOME REALLY.
REALLY EXCITING
SCO0PS WHEN YOU
WERE AT THE MAIN
OFFICE. TELL ME!

I OFTEN FAILED TO
REPORT BIG NEWS, 1 THAT'S
HAVE ALSO WRITTEN A NOTHING TO
LETTER OF APOLOGY BE PROUD
FOR INCLUDING FALSE OF!
INFORMATION IN MY
REPORTING.

I UNDERSTAND THAT
YOU HAVE HIGH
EXPECTATIONS

FOR NEWSPAPER
JOURNALISM, BUT THE
BASICS ARE MOST
IMPORTANT.

CALM DOWN,
NORIKO.

NORIKO WANTS A 5COOP!



WRITE SIMPLY AND
CLEARLY—DON'T USE BIG
WORDS OR JARGON.

DON'T FORGET
ABOUT THE
READERS ON
MAIN STREET.

ALSO, DON'T PRETEND TO
KNOW EVERYTHING. IF YOU
COME ACROSS ANYTHING

YOU DON'T KNOW, ALWAYS
ASK SOMEONE OR cHeck T D105H! 15 STILL
IT OUT YOURSELF.

YOUNG, BUT
HIS ABILITY TO
INVESTIGATE IS
EXCEPTIONALLY

I DONT PRETEND TO ¢
KNOW EVERYTHING! (

BY THE WAY,

7

WHAT IS THE ANTITRUST
LAW FOR?
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WELL, YOU KNOW THAT
THE FEDERAL TRADE
COMMISSION KEEPS AN
EYE ON COMPANIES TO

SEE IF THEY DO ANYTHING

THAT HINDERS FREE

OF COURSE!

COMPETITION,
PON'T YOou?

POUBTFUL
@

COMPANIES AND STORES
ARE ALWAYS TRYING TO
SUPFLY CONSUMERS WITH
BETTER MERCHANDISE AT
LOWER PRICES.

THE RESULT OF THEIR
COMPETITION SHOULD
BE BETTER QUALITY AND
LOWER PRICES.

BUT IF SOME COMPANIES
AGREE NOT TO COMFPETE
WITH EACH OTHER, OR
SOMETHING ELSE HAPPENS
TO HINPER COMPETITION,
CONSUMERS WILL BE
GREATLY DISADVANTAGED.
THE AIM OF THE FEDERAL
TRADPE COMMISSION 1S TO
CONTROL SUCH ACTIVITIES.

NOW, I WILL TELL
YOU ABOUT A MOVING
WALKWAY TO EXPLAIN

WHY WE MUST THINK OF
THE ANTITRUST LAW IN
TERMS OF CALCULUS.

WE'LL DIsCUSS
THE SUM RULE OF
DIFFERENTIATION.
YOU SHOULD
REMEMBER THIS
BECAUSE IT IS

NORIKO WANTS A SCOOF!
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THE SUM RULE OF DIFFERENTIATION

FORMULA 2-1:
THE SUM RULE OF DIFFERENTIATION

For h(x)=f(x)+g(x)
h'(x) = f'(x)+g'(x)

THAT 15, THE
DERIVATIVE OF A
FUNCTION 15 EQUAL
TO THE SUM OF THE
DERIVATIVES OF THE
FUNCTIONS THAT
COMPOSE IT.

WHAT
DOES THAT
MEAN?

LET'S LOOK
INTO THIS BY
APPROXIMATING
AROUND x = a.

WE DID
THIS
BEFORE.

f(l):z lt(a)(x—an f(a) ) LGUEAK
g~ glaXz-a)+ (o) o
APPROXIMATING
GIVEN THAT

SINCE h(x) = flx) + g(x),
THIS EQUATION.

hw=ka-a -+ e

APPROXIMATING

WE WANT TO KNOW Ic.

SUBSTITUTE @ AND @ IN
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WE ALSO
KNOW THAT...

h(l) e ffa)(z—a) + 10 (@) + 9’(a)(x—a) +g(a) o

50 IF WE REARRANGE  |.*."."."."."..

.......

THE TERMS OF ®,  [- - - -.-.-.-.*

EQUATION ® SAYS /).~
THE COEFFICIENT OF /.{ LET'S SEE.
(x - a) WILL BE k.

AND THE
DIFFERENTIAL

THE DERIVATIVE. 50,
k=h'a)=
Sfla) +g'(a).

NOW, LET ME I'D RATHER NOT
EXPLAIN ABOUT
THINK ABOUT 1T,
THE MOVING BUT I GUESS
WALKWAY.

I WILL.

SUPPOSE FUTOSHI
IS WALKING POWN
THE SIDEWALK,
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SUPPOSE THE
DISTANCE HE WALKED
IN x MINUTES FROM
THE REFERENCE POINT
0 15 flx) METERS.

SUPPOSE x MINUTES
LATER, HE IS AT
POINT P.

a MINUTES LATER,
HE 1S AT POINT A.

~

THAT'S RIGHT.
BUT DOES
THIS MEANS THAT HE IT MEAN
TRAVELED FROM A TO P ANYTHING?

IN (x — a) MINUTES.

MR. SEKI, THE
SUPPOSE THIS LEFT SIDE OF
TRAVEL TIME Tsl:ﬂs EQUATLON 5
x-a)l5 - Fla)(x—a)+ DISTANCE TRAVELED
EXTREIJ\ELY Hixy=Fla)ie-a)ss(e) DIVIDED BY TRAVEL
SHORT. TIME. 50, 15 THIS
THE SPEED?

THIS CAN BE
CHANGED
INTO...

J(x)-f(a) EXACTLY! 50,
————~=JS(a) f'la) REPRESENTS
FUTOSHI'S SPEED
WHEN HE PASSES
POINT A.
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THAT MEANS THAT TO
PIFFERENTIATE IS TO FIND
THE SPEED WHEN f(x) IS A
FUNCTION EXPRESSING THE
DISTANCE!

THAT'S RIGHT. 40, IF
h(x) = f(x) + g(x), THEN
h'(x) = f'(x) + g'(x)
MEANS THE
FOLLOWING.

THIS TIME, LET HIM
WALK ON A MOVING
WALKWAY, LIKE YOU

MIGHT SEE AT AN
AIRPORT.,

TRAVELS g(x) METERS
IN x MINUTES

THE MOVING WALKWAY MOVES
Six) METERS IN x MINUTES.
WHEN MEASURED ON THE
WALKWAY, FUTOSH| TRAVELS
glx) METERS IN x MINUTES.

MOVES f(x) METERS
IN x MINUTES

50 THE TOTAL
DISTANCE FUTOSHI
TRAVELS IN x
MINUTES BECOMES

h(x) = f(x) + g(x).
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IT MEANS FUTOSHI'S TRAVEL

THEN, WHAT DOES SPEED, AS SEEN FROM
h'(x) = f'(x) + g'(x) SOMEONE NOT ON THE WALKWAY,
MEAN? IS THE SUM OF HI$ SPEED ON

THE WALKWAY AND THE SPEED
OF THE WALKWAY ITSELF,
DOESN'T IT?

BE PATIENT
BUT, IT"S NOT SO FOR A LITTLE
SURPRISING, 15 WHILE LONGER,
IT? POES THIS GRASSHOPPER.

I TOLD YOU THAT
THE BASICS ARE
IMPORTANT.,

HAVE ANYTHING
TO DO WITH THE
ANTITRUST LAW?

FANT, PANT
THE NEXT RULE 15
ALSO FUNDAMENTAL,
50 REMEMBER THIS
ONE, TOO.

WHEEZE
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THE PRODUCT RULE OF DIFFERENTIATION

FORMULA 2-2:
THE PRODUCT RULE OF DIFFERENTIATION

ONLY ONE
FUNCTION?

For  h(x)=f(x)g(x)
R'(x) =S (x)g(x)+ f(x) g (%)
The derivative of a product is the sum

of the products with only one function
differentiated.

YES. LET'S
CONSIPDER x = a.

h(x)=f(x)g(x)=k(x-a)+1
h(x)={f'(a)(x-a)+ f(a)}x{g'(a)(x-a)+g(a)}
h(x)=f(a)g'(a)(x-a)’ + f(a)g'(a)(x-a)+ f'(a)(x-a)g(a)+ f(a)g(a)

(x-a) 15 ASMALL
CHANGE. THAT MEANS
(x - @)® 15 VERY, VERY
SMALL. SINCE WE ARE
APPROXIMATING, WE CAN
THROW THAT TERM OUT.

h(x)={f(a)g(a)+ f(a)g'(a)}(x-a)+ f(a)g(a)
k=f(a)g(a)+f(a)g'(a)

WE GET THIS.

THE PRODUCT RULE OF DIFFERENTIATION 53



NOW, I WILL UsE
DIFFERENTIATION
TO EXPLAIN WHY A
MONOPOLY SHOULP
NOT BE ALLOWED.

HOW DO YOU
SOLVE A SOCIAL
PROBLEM USING
DIFFERENTIATION?

ISN'T IT RATHER
AN I155UE OF

MORALITY, JUSTICE,

AND TRUTH?

LET'S LOOK AT THE
WORLD IN A MORE
BUSINESSLIKE
MANNER.

A MARKET WHERE MANY
COMPANIES SUPPLY
PRODUCTS THAT CANNOT
BE DISCRIMINATED
BETWEEN IS CALLED “A
PERFECTLY COMPETITIVE

FOR
EXAMPLE?

PERFECTLY
COMPETITIVE MARKET

VIPEO RENTAL

THAT'S RIGHT." COMPANIES
IN A PERFECTLY
COMPETITIVE MARKET
ACCEFPT THE COMMOPDITY
PRICE DETERMINED BY THE
MARKET AND CONTINUE
TO PRODUCE AND SUPPLY
THEIR PRODUCT AS LONG
AS THEY MAKE PROFITS.

__\r"’/

LET'S SEE..
SHOPS?

* IN REALITY, THERE ARE USUALLY BIG-NAME BRANDS FOR ANY COMMODITY.
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IF THE COST OF
PRODUCING ONE MORE

SUPPOSE, FOR EXAMPLE, A COMPANY UNIT IS $10,000, THE
PROPDUCING CD PLAYERS WHOSE COMPANY WILL SURELY
MARKET PRICE |15 ¥12,000 PER UNIT INCREASE PRODUCTION,
CONSIPDERS WHETHER OR NOT IT BECAUSE IT WILL MAKE
WILL INCREASE PRODUCTION VOLUME. MORE PROFIT.

S " SINCE MANY
e 7/ OTHER COMPANIES

PRODUCE THE SAME

KIND OF PRODUCT, THE
COMPANY BELIEVES

S THAT ITS INCREASE IN

— = PRODUCTION WILL CAUSE

THE PRICE TO DECREASE.

50 THE COMPANY WILL CONSIDER
MAKING ADDITIONAL UNITS, BUT THE IN SHORT, THE MARKET
COST OF MAKING ONE MORE UNIT STABILIZES WHEN THE
CHANGES, AND THE COMPANY'S MARKET PRICE OF
PRODUCTION EFFICIENCY WILL THE UNIT EQUALS THE
CHANGE. EVENTUALLY, THE COST COST OF PRODUCING
OF MAKING ONE MORE UNIT ANOTHER UNIT
WILL REACH THE MARKET PRICE ’
OF ¥12,000. AT THAT POINT, AN
INCREASE IN PRODUCTION WOULD
NOT BE WORTH THE COS5T.

ON THE OTHER HAND, THE
STORY 1S DIFFERENT IN A
MONOFPOLY MARKET, WHERE
ONLY ONE COMPANY SUPPLIES
A PARTICULAR PRODPUCT. THEN
JUST ONE COMPANY 1S THE
ENTIRE MARKET.

WHEN YOU LOOK
AT THE MARKET
AS A WHOLE, AN
INCREASE IN SUPPLY
WILL CAUSE THE
PRICE TO GO DOWN.
THAT'S JUST SUPFLY
AND DEMAND.

MONOPOLY MARKET
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BY THE WAY, p’(x), WHICH
EXPRESSES THE CHANGE
IN PRICE, IS NEGATIVE
BECAUSE THE UNIT'S
PRICE DECREASES IF
. x |15 INCREASED.

NOW, LET'S ASSUME
WE KNOW THAT THE
PRICE THAT ALLOWS
THE COMPANY TO SELL
EVERY UNIT SUPPLIED
IN QUANTITY x 1S p(x),
A FUNCTION OF x.

THAT'S RIGHT.
THE COMPANY'S Revenue = R(x) = price x quantity = p(x) x x
REVENUE FROM THIS
PRODUCT IS GIVEN
BY THIS...

FORMULA 2-3:
\‘V‘/ THE COMPANY'S REVENUE
o) Since R(x)=R'(a)(x -a)+R(a)
we know that

.R(x) -R (a)J= R’(a)l(x - a)‘

THIS SHOWS
US THAT THE
ADDITIONAL REVENUE
FROM AN INCREASE
IN PRODUCTION IS
R'(a) PER UNIT.

CHANGE IN CHANGE IN
REVENUE PRODUCTION
VOLUME

A

YOU'RE RIGHT. SINCE
R(x) = p(x) x x,
REMEMBER THAT
PRODUCT RULE OF
DIFFERENTIATION.

1 GET IT! THE COMPANY
NEEDS TO CALCULATE THIS
TO DECIDE WHETHER TO
INCREASE PROPUCTION,
WHILE COMPARING IT
AGAINST THE CO5TS OF
PRODUCING THE UNITS.

ITHINK I
REMEMBER...

Py

AN
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WE GET R'(a)=p'(a) x a + pla) x 1

RIGHT. PROPUCTION
SHOULD BE
STOPPED AT THE
EXACT MOMENT IT
BECOMES LESS
THAN THE COST
OF PRODUCTION
INCREASE PER UNIT.

e

IN OTHER WORDS,
PRODUCTION WILL BE STOPFED
WHEN p'(a) x a + pla) = CO5T
OF PRODUCTION. WE KNOW
THAT THE FIRST TERM 15
NEGATIVE, 5O THE MARKET
PRICE pla) IS GREATER
THAN THE COST.

BUT THE PRICE IS
ACTUALLY GREATER

THAN THE COST
OF PROPUCING AN
ADDITIONAL UNIT WHEN
A MONOPOLISTIC
COMPANY STOPS

PRODUCTION.

THAT'S UNDUE
PRICE-FIXING,

ISN'T T2 1 5EE.

YOU ARE RIGHT, BUT YOU
SHOULD TAKE A CLOSER
LOOK. COMPANIES PO
THIS NOT BECAUSE OF
MALICIOUS MOTIVES BUT
BASED ON A RATIONAL
JUDGMENT.

LOOK AT THE
EXPRESSION
AGAIN.
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Sales increase (per unit) when production is increased a little more:

R'(a)=p'(a)a+p(a)
The two terms in the last expression mean the following:

pla) represents the revenue from selling a units

p'(a)a = Rate of price decrease x Amount of production
= A heavy loss due to price decrease influencing all units

WHAT PO You WHAT DO THE MONOPOLY
THINK, NORIKO? ITHINKZ | | STOPS PRODUCTION,
CONSIDERING BOTH

HOW MUCH IT OBTAINS
BY SELLING ONE MORE
UNIT AND HOW MUCH
LOSS IT SUFFERS DUE
TO A PRICE DECREASE.

BUT, FOR CONSUMERS
AND SOCIETY, THE
COMPANY'S BEHAVIOR
IS THE CAUSE OF HIGH
PRICES, WHICH 1S NOT
DESIRABLE. THAT'S
WHY MONOPOLIES ARE
PROHIBITED BY LAW.

IF 50, IT I5 NOT DOING
A "BAD" THING BUT IS
JUST SIMPLY ACTING IN
ACCORDANCE WITH A
CAPITALIST PRINCIPLE \\ N (
OF PROFIT-SEEKING.
THEREFORE, ACCUSING ©
THE COMPANY OF BEING

MORALLY WRONG |15 OF
NO USE.
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AMAZING!!

MR. SEK|, THAT'S GREAT!
ALL OF SOCIETY'S

PROBLEMS CAN BE SOLVED

WITH DIFFERENTIATION,

CAN'T THEY?

YOU MUST
TELL ME.

WHAT ABOUT
LOVE? HOW
DO YOU SOLVE
FOR LOVE?

YOU CAN'T BE SERIOUS.
IT'S IMPOSSIBLE!

ARGHHH!
1 HATE

you!!
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ASAGAKE TIMES, OH, HELLO,

SANDA-CHO B...BOSS! =
OFFICE. —

o~
I'd

— -—

~ -

THE :fi@gkﬁ gg”ff THE NEWSPAPER

e WANTS TO ASK YOU

A FEW QUESTIONS e
ABOUT THAT ARTICLE /
YOU WROTE. £
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THEY WANT TO
KNOW MORE ABOUT
YOUR SOURCES AND

ANY BACKGROUND
INFORMATION. THIS MAY
BE A GOOD OPPORTUNITY

WHAT'S THE
MATTER? YOU
PON'T LOOK

S0 GOO0PD.

TO RESTORE YOUR ./

YES...1
UNDERSTAND.

nnnnnnnn

THANK YOU FOR
CALLING ME. T'LL GET
EVERYTHING TOGETHER.

OH, NO. IT'S
NOTHING
SERIOUS.

MR. SEKI GETS A CALL &1



DIFFERENTIATING POLYNOMIALS

AS A WRAP-UP,
MONOMIAL LET'S

IL MEMORIZE THE

y=ax FORMULAS FOR

DIFFERENTIATING
i - POLYNOMIALS. THE

W sgﬁgﬁgff T * i DIFFERENTIATION

' + + 3 OF ANY

y=ax +bx+c POLYNOMIAL CAN
Y BE PERFORMED
POLYNOMIAL BY COMBINING
THREE FORMULAS.

I

FORMULA 2-4: THE DERIVATIVE OF AN nTH-DEGREE FUNCTION

The derivative of h(x)=x" is h'(x)=nx""

How do we get this general rule? We use the product rule of differentiation
repeatedly.

For h(X) = x2, since h(X) = xxx,h'(x) =xx1l+1xx=2x | THIS RESULT 1S U‘BEVJ

The formula is correct in this case.

’

For h(x)=x°, since h(x)=x*xx, h'(x) = (xz)f xx+x2x(x) =(2x)x+ x' x1=3x>
The formula is correct in this case, too.
For h(x)=x*, since h(x)=x®xx, h'(x) :(xa)' X x + x° x(x)' =3x*xx+x*x1=4x°

Again, the formula is correct. This continues forever. Any polynomial can
be differentiated by combining the three formulas!

FORMULA 2-5: THE DIFFERENTIATION FORMULAS OF SUM RULE,
CONSTANT MULTIPLICATION, AND x"

© Sumrule: {f(x)+g(x)} = f(x)+g(x) © Powerrule (x"): {x"} =nx""

® Constant multiplication: {« f(x)}' =af'(x)

Let’s see it in action! Differentiate h(x)=x’ +2x* +5x +3

rule ®

R (x)={x® +2x* + 5x+3}’ =[(x3 )’ +(2x? )’ +(5x) +(3)

1

= (x*) +2(x*) +5(x) =3x +2(2x) + 5x1=3x> + 4x + 5
e ] ——————— 1§
rule @ rule ®

6Z CHAPTER Z LET'S LEARN DIFFERENTIATION TECHNIQUES!



I'M GOING OUT
FOR A WHILE.

DON'T WORRY
ABOUT HIM.

I WANT YOU TO GO OUT

AND PO SOME REFPORTING.

REALLY?

YES, 1 HEARD THAT THE

FARK WAS JUST
RENOVATED.

ROLLER COASTER IN THE
SANDA-CHO AMUSEMENT

JUST A LOCAL
ROLLER COASTER...

DIFFERENTIATING POLYNOMIALS &3



FINDING MAXIMA AND MINIMA

OOH!

EEK! \
\\\H\
\“;.

J SOMETHING . x
LIKE A Minimum
ROLLER

COASTER

TRACK

of a function.
Since a maximum or minimum is often the absolute maximum or

solution.

THEOREM 2-1: THE CONDITIONS FOR EXTREMA

If y = f{x) has a maximum or minimum at x = a, then f’(a) = 0.

that satisfy f'(a) = 0. These values are also called extrema.

CLICKETY-
CLACK

WHAT'S THAT?
I HATE ROLLER
COASTERS...

SANDALAND
AMUSEMENT

FARK

Maxima and minima are where a function changes from a decrease to an
increase or vice versa. Thus they are important for examining the properties

minimum, respectively, it is an important point for obtaining an optimum

This means that we can find maxima or minima by finding values of a
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Assume f'(a) > 0.

Since f(x) = f'(a) (x - a) + f(a) near x = a,
f'(a) > 0 means that the approximate
linear function is increasing at x = a.
Thus, so is f(x).

In other words, the roller
coaster is ascending, and it is not at
the top or at the bottom.

Similarly, y = f(x) is descending
when f'(a) < 0, and it is not at the
top or the bottom, either.

If y = f(x) is ascending or descending when f'(a) > 0 or f'(a) < 0, respectively,
we can only have f'(a) = O at the top or bottom.

In fact, the approximate linear function y = f'(a) (x — a) + fla) = 0 x (x — a)
+ fla) is a horizontal constant function when f'(a) = 0, which fits our under-
standing of maxima and minima.

(a, fla))

fla)=0
fl@)=0

(a, fla)

THIS
DISCUSSION CAN
BE SUMMARIZED INTO
THE FOLLOWING
THEOREM.

THEOREM 2-2: THE CRITERIA FOR INCREASING AND DECREASING
y = f(x) is increasing around x = a when f"(a) > 0.

y = f(x) is decreasing around x = a when f'(a) < 0.
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LA, LA, LA!

BAR SANDAYA

ILOVE
DIFFERENTIATION!
I CAN SEE
SOCIETY WITH IT!
OH, 50 YoU
I 1
TEE HEE HEE! UNDERSTAND!

WHAT? YOU
JUsT SAID YOU
LOVE...

WHAT? YOU HAVE
ANYTHING NEW TO
SAY? ALL YOU sAY

IS PIFFERENTIATION,

PIFFERENTIATION.

NO, THANK YOU. I DON'T IT's BECAUSE
WANT TO DRINK TOO OF THAT CALL,
MUCH TONIGHT. ISN'T IT? WHAT
PIP THE BOSS

SAY?

WOULD YOU LIKE
ANOTHER DRINK?
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DELICIOUS! DRAFT
BEER IS THE BEST
BEER!

SMALL ONES THAT BECOME
EVEN SMALLER AND

HERE 15 A QUESTION! THERE 3 \
ARE TWO TYPES OF BEER \\ \ ;
BUBBLES. RELATIVELY A e

AND RELATIVELY LARGE
ONES THAT QUICKLY BECOME
LARGER, RISE UP TO THE
SURFACE, AND POP THERE.
NOW, EXPLAIN WHY THIS
HAPPENS!
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SINCE CARBON DIOXIDE IN
CARBONATED DRINKS, SUCH AS
BEER, 1S SUPERSATURATED, IT IS
MORE STABLE AS A GAS THAN

AH!

; My
-\ PLEASURE!

WHEN IT 15 DISSOLVED IN FLUID.

i

sy
5
K2 Y

50, THE ENERGY OF
A BUBBLE DECREASES
IN PROPORTION TO
ITS VOLUME

cimﬁ, WITH r BEING THE
3 RADIUS).

GAS (BUBBLEY

SURFACE TENSION ACTS

\

ON THE OTHER HAND, SURFACE
TENSION ACTS ON THE BOUNDARY
SURFACE BETWEEN THE BUBBLE
AND THE FLUID, TRYING TO
REDUCE THE SURFACE AREA.

THEREFORE, THE ENERGY OF
THE BUBBLE DUE TO THIS FORCE
INCREASES IN PROPORTION TO
THE SURFACE AREA, 4nr?.

BUBBLE OF RADIUS r
CAN BE EXPRESSED

A\
CONSIDERING THESE SURFACE
TWO EFFECTS, THE V%l;:UJX\E gsieg
ENERGY E(r) OF A SPHERE SPHERE

E(r)= 'a[gﬁﬁ}Jﬁ b(4rr?)

TERM
FOR THE
VOLUME

TERM

FOR THE
AREA
AS SHOWN HERE.
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TO SIMPLIFY THE PROBLEM,

THE BUBBLE TRIES TO I SEE. LET'S ASSUME a AND b

REDUCE ITS ENERGY AS IMPRESSIVE, | | ARE 1 AND CHANGE THE

MUCH AS POSSIBLE. IF \  FUTOSHI! VALUE OF r 50 THAT

WE FIND OUT HOW E(r) E(r) = -r° +3r°" THAT IS
BEHAVES TO REDUCE ENOUGH TO SEE THE

TSELF, WE WILL SOLVE GENERAL SHAPE OF E(r).

THE MYSTERY OF BEER ]

BUBBLES.

iy

FIRST, LET'S EiNCE ,
FIND THE E'(r)=(-r*) +(3r%)
EXTREMUM. !
=-3r" +6r
==3r{r-2)
WHEN r=2, E'(r) = 0,
FORO<r<2(E'(r) >0), THE
FUNCTION IS INCREASING, AND
FOR 2 < r, THE FUNCTION 15
DECREASING (E'(r) < 0).
S0, WE FIND E(r) IS AT ITS
MAXIMUM POINT P WHEN r = 2.

NOW WE KNOW THAT THE A
GRAPH OF E(r) LOOKS LIKE (")
THIS. THIS GRAPH TELLS US p
THAT THE BUBBLES BEHAVE L) ; N
DIFFERENTLY ON THE TWO ! ;
SIDES OF MAXIMUM P.
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A BUBBLE THAT HAS THE RADIUS
AND ENERGY OF POINT M
SHOULD REDUCE ITS RADIUS
UNTIL IT IS SMALLER THAN m TO
MAKE ITS ENERGY E(r) SMALLER.
THE BUBBLE WILL CONTINUE
TO BECOME SMALLER UNTIL
IT FINALLY DISAPPEARS.

E(r) [

m 2
<+— The bubble
becomes smaller

ON THE OTHER HAND, A BUBBLE
THAT HAS THE RADPIUS AND
ENERGY OF POINT N SHOULD
INCREASE ITS RADIUS TO MAKE
ITS ENERGY E(r) SMALLER. THE
BUBBLE WILL CONTINUE TO
GROW LARGER AND TO RISE
UP INSIDE THE BEER.

2 n
The bubble —»
becomes larger

HEH-HEH...FUTOSHI

N..NORIKO!
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DON'T BRING i
UP GRAPHS AND (e J SRUT Uk
THEOREMS IN FRONT | SAKE! BRING
OF ME!! ﬂ ME SAKE!

YEOW! YOU BEHAVE
TOTALLY DIFFERENTLY
OUTSIDE OF THE
OFFICE!

SHE SEEMS TO
HAVE REACHED
HER MAXIMUM.
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USING THE MEAN VALUE THEOREM

We saw before that the derivative is the coefficient of x in the approximate
linear function that imitates function f(x) in the vicinity of x = a.
That is,
f(x) = f’(a)(x - a) * f(a) (when x is very close to a)

But the linear function only “pretends to be” or “imitates” f(x), and for b,
which is near a, we generally have

0 f(b)#f(a)(b-a)+f(a)

So, this is not exactly an equation.

FOR THOSE WHO CANNOT STAND FOR THIS, WE
HAVE THE FOLLOWING THEOREM.

THEOREM 2-3: THE MEAN VALUE THEOREM

For a, b (a < b), and ¢, which satisfy a < ¢ < b, there exists a
number c that satisfies

f(b)=f'(c)(b-a)+ f(a)

In other words, we can make expression @ hold with an equal sign not
with f’'(a) but with f'(c), where c is a value existing somewhere between a
and b.”

* That is, there must be a value for x between a and b (which we'll call ¢) that has a tangent line
matching the slope of a line connecting points A and B.
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Let’s draw a line through point A = (a, f(a)) and point B = (b, f(b)) to form
line segment AB.

y =flx)

A = (a, fla)) :

We know the slope is simply Ay / Ax:

® Slope of AB = M

b-a

Now, move line AB parallel to its initial state as shown in the figure.

The line eventually comes to a point beyond which it separates from the
graph. Denote this point by (c, f(c)).

At this moment, the line is a tangent line, and its slope is _f'(c).

Since the line has been moved parallel to the initial state, this slope has
not been changed from slope @.

THEREFORE, WE KNOW
J(p)-f(a)
b-a

MULTIPLY BOTH SIDES BY THE
DENOMINATOR AND TRANSPOSE
TO GET f(b)= f'(c)(b-a)+ f(a)

=J'(e)

USIN@ THE MEAN VALUE THEOREM 73



USING THE QUOTIENT RULE OF DIFFERENTIATION

g9(x)
J(x)
First, we find the derivative of function p(x)= f—(l-';j, which is the

reciprocal of f(x).
If we know this, we’ll be able to apply the product rule to h(x).

Using simple algebra, we see that f(x) p(x) = 1 always holds.

Let’s find the formula for the derivative of h (x) =

1=f(x)p(x)={f"(a)(x-a)+ f(a){p'(a)(x-a)+ p(a)}
Since these two are equal, their derivatives must be equal as well.
0=p(x)f"(x)+p'(x) f(x)
p(x)f'(x)

Thus, we have p’(x)= ———f-W.

, substituting this for p(a) in the numerator gives

Since p(a)= @
a
it (L)
Pla)=——3"
f(a)
For h(x)= M in general, we consider h(x)=g(x)x L - g(x)p(x)
S (x) f(x)
and use the product rule and the above formula.

W ()= 9/ ()P (x) 9 (x) P (x) = (x) 75 - 9) 7

Therefore, we obtain the following formula.

FORMULA 2-6: THE QUOTIENT RULE OF DIFFERENTIATION
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CALCULATING DERIVATIVES OF COMPOSITE FUNCTIONS

Let’s obtain the formula for the derivative of h(x) = g(f(x)).
Near x=a,

f(x)-f(a)=f'(a)(x-a)
And near y = b,
9(y)-g(b)=~g'(b)(y-D)

We now substitute b = f(a) and y = f(x) in the last expression.
Near x = a,

g(f(x)-g(f(a))=g'(f(a))(f(x)-f(a))

Replace f(x) - f(a) in the right side with the right side of the first
expression.

9(f(x))-g(f(a)=g'(f(a)) f'(a)(x-a)

Since g(f(x)) = h(x), the coefficient of (x — a) in this expression gives us
h'(a) = g'(fla)) f'(a).

We thus obtain the following formula.

FORMULA 2-7: THE DERIVATIVES OF COMPOSITE FUNCTIONS
h'(a)=g'(f(x)) (%)

CALCULATING DERIVATIVES OF INVERSE FUNCTIONS

Let’s use the above formula to find the formula for the derivative of x = g(y),
the inverse function of y = f(x).

Since x = g( f(x)) for any x, differentiating both sides of this expression
gives 1 = g'(f(x)) f'(x).

Thus, 1 = g'(y) f'(x), and we obtain the following formula.

FORMULA 2-8: THE DERIVATIVES OF INVERSE FUNCTIONS
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FORMULAS OF DIFFERENTIATION

FORMULA KEY POINT
Constant =" The multiplicative
multipli- {af (x)} =af'(x) constant can be fac-
cation tored out.
x" (Power) (x“ " g The exponent becomes
) a the coefficient, reduc-
ing the degree by 1.
Sum ¢ ' The derivative of a
{_f(x) ¥ g(x)} =J (x) *9g (x) sum is the sum of the
derivatives.
Product The sum of the prod-

ucts with each func-
tion differentiated in
turn.

Quotient { ) }

The denominator is
squared. The numera-
tor is the difference
between the products
with only one function
differentiated.

Composite ’ . , The product of the
functions {g(f (x))} =9 (f (x))f (x) derivative of the outer
and that of the inner.
Inverse ;5 1 The derivative of an
functions g'(y)= £ (x) inverse function is
the reciprocal of the
original.
EXERCISES

—_

A WON

Calculate the extrema of f(x) = x® - 12x.
Find the derivative f’

(%) of fx) = (1 - x)°.

1

For natural number n, find the derivative f'(x) of f(x) = —
X

Calculate the maximum value of g(x) = x2(1 - x)® in the interval 0 < x < 1.
g .
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HEY, DID YOU
READ THE ARTICLE
IN TODAY'S
NEWSPAPER?

THIS ONE. THIS
PERSON GOES TO
MY COLLEGE!

THE TOKYO
METROPOLITAX OUR UNIVERSITY
GOVERNMENT
HAS BUDGETED © e,

GLOBAL WARMING
COUNTERMEASURES \
USING THE STUDENT'S \
FINDINGS. THIS 1S
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CARBON DIOXIDE
(CO,) 15 SUSPECTED
TO BE THE CAUSE OF
GLOBAL WARMING.

IT 1S CALLED A
GREENHOUSE GAS. IT
HAS THE EFFECT OF
e——==——=x=/ KEEPING THE EARTH WARM
BY PREVENTING HEAT
RADIATION FROM ESCAPING
EARTH'S ATMOSPHERE.

IF HEAT RADIATION
CANNOT ESCAPE
THE ATMOSPHERE,
THE EARTH GETS
TOO WARM, CAUSING
ABNORMAL WEATHER.

THE STUDENT
ANALYZED HOW THE
WIND AFFECTS THE
TEMPERATURE.

HE PROPOSED
RESTRICTING THE
CONSTRUCTION OF
LARGE BUILDINGS

IN THE PATH OF
THE WIND.

HE SEEMS TO HOPE
THAT IF THE WIND
BLOWS OVER THE
COAST OR RIVERS
UNHINDERED, THE

INCREASE IN GROUND
TEMPERATURE
WOULD SLOW.

IT'S TOUGH TO
REDUCE €O,

EMISSIONS

IN TODAY'S

BUT EVERYBODY
SHOULD TRY TO
REDUCE THEM.

SOCIETY.

STUDYING GLOBAL WARMING 7q



HOW DO YOU FIND
OUT IF THE AMOUNT
OF €O, IN THE AIR IS
INCREASING IN THE
FIRST PLACE?

OH, NO,
DIFFERENTIATION?

NO, IT'S INTEGRATION
THIS TIME. BUT IT'S
ALSO A FUNCTION!

ALLOWS US TO FIND
THE TOTAL AMOUNT

INTEGRATION

OF CO, IN THE AIR.

IF WE KNOW THE
TOTAL AMOUNT
OF O, INTHE AIR, ||| - €025 EFFECT ON GLOBAL

WE CAN ESTIMATE WARMING

THESE THINGS. 2. THE AMOUNT OF €O, IN THE
AIR PRODUCED BY HUMAN
FACTORS, LIKE CARS AND
INDUSTRY

HUH.

BUT FINDING THE
TOTAL AMOUNT OF
CO, 15 A DIFFICULT

PROBLEM.
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IF THE CO.
CONCENTRATION IN
THE AIR WERE UNIFORM
EVERYWHERE, WE COULD
CALCULATE THE TOTAL
AMOUNT OF CO.: THE
€O, CONCENTRATION
MULTIPLIED BY THE TOTAL
VOLUME OF AIR.

BUT THE €O,
CONCENTRATION
DIFFERS FROM PLACE
TO PLACE, AND IT5
CHANGE 15 SMOOTH
AND CONTINUOUS.

LET'S THINK ABOUT

HOW WE CALCULATE

THE TOTAL AMOUNT
FOR THE CONTINUOUS
CHANGE OF

CONCENTRATION
LIKE THIS. ‘

UH...CAN YOU

THINK OF
A SIMPLER
EXAMPLE?

OKAY. LET'S USE
THIS, FUTOSHI'S
TREASURED
SHOCHU*!

7z

THIS 15 FOR
NORIKO'S TRAINING.
IT'S YOUR FAULT
YOU KEEP IT IN THE
OFFICE.

NO! IT'S *“THOUSAND
YEARS OF SLEER” A
VERY RARE, FAMOUS
SHOCHU FROM
SANDA-CHO.

MAYBE THAT'S
WHY HE 15
ALWAYS NAPFING.

STUDYING GLOBAL WARMING
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ILLUSTRATING THE FUNDAMENTAL THEOREM OF CALCULUS

WE WILL POUR HOT
WATER INTO THIS
GLASS OF SHOCHLU.

HEIGHT: 9 CM

BASE AREA: 20 CM?

NATURALLY, WHEN WE
ADD THE HOT WATER,
THE LOWER PART IS
STRONG AND THE
UPPER PART 15 LESS
CONCENTRATED.

ALSO, THE
CONCENTRATION
CHANGES SMOOTHLY,
LITTLE BY LITTLE,
FROM TOFP TO
BOTTOM.

NOW LET'S EXPRESS THE

X evm DENSITY OF SHOCHU AT
x CENTIMETERS FROM

THE BOTTOM USING THE

FUNCTION p(x) IN &/cM>,
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SUPPOSE pix) 15
EXPRESSED AS

A

Density
px)

NOW NORIKO, WHAT
IS THE AMOUNT OF
ALCOHOL IN GRAMS

I CAN'T
CONTAINED IN THIS FIGURE IT
SHOCHU WITH HOT OUT THAT
WATER? QUICKLY.

STEP 1—WHEN THE DENSITY IS CONSTANT

IF THE DENSITY IS

0.1 G/CM?, AS SHOWN IN
91 THIS GRAPH, WE NEED TO
p CALCULATE THE DENSITY
BUT IF THE TIMES THE HEIGHT
DENSITY 15 TIMES THE BASE AREA:
CONSTANT, IT'S 0.1 X g X Z0 = 18 GRAMS,
EASY. THE TOTAL WHICH 15 THE AMOUNT OF
AMOUNT OF ALCOHOL.
ALCOHOL EQUALS 01—
THE DENSITY :
MULTIPLIED BY THE : >
VOLUME OF THE 9 x
CONTAINER.
YOU ARE RIGHT! BUT
ISN'T IT THE SAME px) 1 TO 35‘;4‘{5#;? Xfé-gME,
AS CALCULATING
THE AREA OF THE MULTIPLY HEIGHT x
SHADED PART OF BY THE BASE AREA,
THE GRAPH? 20 cM”.
0.1 s 7
A A
//’// //////
2 9
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STEP Z—WHEN THE DENSITY CHANGES STEPWISE

Density

NOW, LET'S IMAGINE

A GLASS OF SHOCHU AS px)
WHERE THE DENSITY REPRESENTED
CHANGES STEPWISE, BY THIS GRAPH,

FOR EXAMPLE.

0.3 &—o

WHY DON'T YOU
CALCULATE [T,
NORIKO?

WELL, SEPARATING
THE GRAPH INTO THE

STEPS..THE BASE AREA 0.3x2x20+0.2x4x20+0.1 x3x20
IS 20 CMZ...
Alcohol for Alcohol for Alcohol for
the portion of | | the portion of | | the portion of
0<x<2 Lzx=b B<x<9

=(03x2+0.2x4+0.1x3)x20=34
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THAT'S
THE ANSWER RIGHT.
15 34 GRAMS,

ISN'T T2
STEP 3—WHEN THE DENSITY CHANGES CONTINUOUSLY

NOW, WHAT DO .
YOU DO WHEN Dens‘g]’ WHAT A
plx) CHANGES p BOTHER!!

CONTINUOUSLY?

7Y

1 SEE. WE CAN START
BY IMITATING THE
FUNCTION WITH A

STEPWISE FUNCTION
AND CALCULATE
USING THE SAME

METHOD WE DID IN
STEP 2.

ACTUALLY, IT'S
NOT A BOTHER AT
ALL. LOOK!
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CALCULATING

T:IE@ Q—TA;(?IEIZ‘II'N@ The density is constant between AJESH%O&T;H?'EB
Xys Xys s AND ig ¥y and X, and is p(x,): STEPWISE FUNCTION
GIVES US AN AMOUNT

The density is constant between

: IMITATING THE
% and x, and is p(x,). EXACT AMOUNT OF
The density is constant between ALCOHOL.

x, and x, and is p(x,).

IN THIS WAY, WE IMITATE
p(x) WITH A STEPWISE

FUNCTION.
RIGHT. THE SHADED
THAT'S THIS AREA OF THE
CALCULATION, STEPWISE FUNCTION
ISN'T IT? 15 THE SUM OF THE‘UQE
EXPRESSIONS (BUT
P(x,)% (%, —x,)%20 WITHOUT MULTIPLYING
_ BY 20 cM?, THE
P(%,)%(x, ~ x,)x20 BASE AREA.
P(x,)x(x; —x,)x20
p(xa)x(x4 —x3)><20
p(x4)><(x5 _x4)><20
+p(x5)><(x6 —x; )% 20
Approximate

amount of alcohol

pPlx,)
plx)
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THEN, IF WE MAKE THIS WELL, THAT'S
DIVISION INFINITELY FINE, TRUE, BUT IT'S YOU'D HAVE TO ADD UP
WE WILL GET THE EXACT NOT REALISTIC. AN INFINITE NUMBER OF

AMOUNT OF ALCOHOL,
WON'T WE?

INFINITELY FINE PORTIONS.

LOOK AT THIS
EXPRESSION. DOES
IT REMIND YOU OF
SOMETHING?

AH! IT LOOKS LIKE AN
IMITATING LINEAR

FUNCTION!
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STEP 4—REVIEW OF THE IMITATING LINEAR FUNCTION

When the derivative of f(x) is given by f'(x), we had f(x) = f'(a) (x — a) + fla)
near x = d.
Transposing f(a), we get

0 f(x)-fla)=f(a)(x-a)
or (Difference in f) =~ (Derivative of f) x (Difference in x)
If we assume that the interval between two consecutive values of x,, x,,
Xg, X3, ..., Xg is small enough, x, is close to x, x, is close to x;, and so on.
Now, let’s introduce a new function, g(x), whose derivative is p(x). This
means q'(x) = p(x).
Using @ for this g(x), we get

(Difference in q) ~ (Derivative of g) x (Difference in x)
q(x1)_Q(xo) = P(xu)(xl 77‘0)
q(x;)—q(x,) = p(x,)(x, - x,)

The sum of the right sides of these expressions is the same as the sum
of the left sides.

Some terms in the expressions for the sum cancel each other out.

50 WE NEED TO FIND
FUNCTION q(x) THAT
SATISFIES q'(x) = p(x)-

Substituting x; = 9 and x, = 0, we get

The approximate amount of alcohol = the sum x 20
{a(xs)—a(x,)}x20

{a(9)-a(0)}x20
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STEP S—APPROXIMATION - EXACT VALUE

WE HAVE JUsT
OBTAINED THE
FOLLOWING
RELATIONSHIP OF
EXPRESSIONS
SHOWN IN THE

The approximate amount of alcohol
(+ 20) given by the stepwise function: q(9)-9g (0)

Pl o, — %, )+ pla )%, =%, )+ ~ | (Constant)

o =

The exact amount
of alcohol (+ 20)

BUT IF WE INCREASE

THE NUMBER OF
POINTS xq, xy, Xy, X3,
AND S0 ON, UNTIL it
BECOMES INFINITE,

WE CAN SAY THAT
RELATIONSHIP ©
CHANGES FROM
“APPROXIMATION"
TO “EQUALITY”

BUT, SINCE THE SUM
OF THE EXPRESSIONS
HAVE BEEN IMITATING
THE CONSTANT VALUE

q(9) - q(0),

The sum of p(x,)(x,., -x,) | _
[for an infinite numbér ofx, | ~ q(9)-q(0)

Q y

The exact amount
of alcohol (+ 20)

WE GET THE
RELATIONSHIP
SHOWN HERE.”

= WE WILL OBTAIN THIS RELATIONSHIP
MORE RIGOROUSLY ON PAGE 94. ILLUSTRATING THE FUNDAMENTAL THEOREM OF CALCULUS 89



STEP 6—p(x) 15 THE DERIVATIVE OF q(x)

If we suppose q(x)= —XL, then q'(x)=- =

NOW NORIKO,
THE NEXT
EXPRESSION WE
WILL LOOK AT
IS THIS.

In other words, p(x) is the derivative of g(x).
g(x) is called the antiderivative of p(x).

2

p(x)

+1 (x+1)°

50, THIS q(x) 15 \
THE FUNCTION
WE WANTED.

The amount of alcohol

={q(9)-q(0)}x20

ot

= 36 grams

THE AMOUNT OF
ALCOHOL IN A GLASS
OF SHOCHU WITH HOT
WATER |15 GENERALLY
24.3 OGRAMS.

50, WE SINCE THE SUM
HAVE A VERY OF INFINITE

STRONG TERMS WE HAVE
BEEN DPOING

=\ DRINK HERE.

REQUIRES A LOT
OF TIME TO WRITE
DOWN, I WILL
SHOW YOU ITS
SYMBOL.
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USING THE FUNDAMENTAL THEOREM OF CALCULUS

P(’lo)(’l. AL P(a:.m,- L)t -=ex 4 P(zs)(:u- 2s)

THE ABOVE
EXPRESSION

Z R CAViL]

A= Zo, 1| e 25

CAN BE WRITTEN
IN THIS WAY.

OH, SIMPLE! k

BUT, WHAT 15 A7

A (DELTA) |15 A GREEK
LETTER. THE SYMBOL 15
USED TO EXPRESS THE

AMOUNT OF CHANGE. DELTA

THIS Ax EXPRESSES THE
DISTANCE TO THE NEXT
POINT. IN OTHER WORDS,
IT 15, FOR EXAMPLE,
(¢, — x5) OR (x, — x,).

WHAT ABOUT X7

USING THE FUNDAMENTAL THEOREM OF CALCULUS
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NOW NORIKO,
WHAT POES

USING 3 (5IGMA) LIKE 50, | Y p(x)Ax

)

X=Xy %) 5o X

EXPRESSES THE OPERATION
“5UM UP FROM x, = 0
TO x;, =97

IT MEANS TO SUM UFP
(THE VALUE OF p AT x) TIMES
(THE PISTANCE FROM x TO
THE NEXT POINT).

YES, IT MEANS
THE EQUATION WE
SAW BEFORE AT
THE BOTTOM OF
PAGE 84.

YES, 1 PO

THE NEXT ONE IS THE ROUND?

SYMBOL TO SIMPLIFY
THIS EQUATION
FURTHER.

SINCE THE EQUATION 15
THE SUM FOR A FINITE
NUMBER OF STEPS,
WE MAKE THE SYMBOL
ROUND WHEN WE HAVE
AN INFINITE NUMBER OF
STEPS.
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I EXPAND ¥ TO

REPLACE A
MAKE [, AND

WITH d.

EXPRESSION & MEANS THE
SUM WHEN THE INTERVAL IS
MADE INFINITELY SMALL, AND
IT EXPRESSES THE AREA
BETWEEN THE GRAPH ON THE

LEFT AND THE X-AXIS.

® | plx)dx

THIS IS CALLED A
PEFINITE INTEGRAL.

IF WE KNOW p(x) [, p(x)dx=q(p)-q(a)

IS THE DERIVATIVE WE HAVE CALCULATED THE
S5UM EXTREMELY EASILY IN
THIS WAY, HAVEN'T WE?

DEFINITE
INTEGRAL,
YOU ARE
WONDERFUL!

:j:p(x)dxz Y, p(x)Ax=q(b)-q(a)

X=Xg,Xp v Xy

We must find g(x) that satisfies q'(x) = p(x)a.

v

|<I1 b | a b

THIS IS THE FUNDAMENTAL THEOREM OF CALCULUS!
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A STRICT EXPLANATION OF STEP 5

In the explanation given before (page 89), we used, as
the basic expression, q(x,)-q(x,)=p(x,)(x, —x,). a
“crude” expression which roughly imitates the exact
expression. For those who think this is a sloppy expla-
nation, we will explain more carefully here. Using the
mean value theorem, we can reproduce the same
result.

We first find g(x) that satisfies
q'(x) = plx).

We place points x, (= a), x;, x,,
X3, ..., X, (= b) on the x-axis.

We then find point x,,; that
exists between x, and x, and satis-
fies q(x,)—q(x,) = q' (x4, ) (%, — %, ).

The existence of such a point : - : ’ ' 5 X
is guaranteed by the mean value

yJ

theorem. Similarly, we find x,, oy = 4] bx, = DI
between x; and x, and get
q(xg)_ q(xl ) = Q’(x12)(x2 - xl)
Areas of

these steps

Repeating this operation, we get

w
Q(xl)‘Q(xn)z q’(xﬂl)(xl xo) :p(xm)(xl_xo) E
q(x,)-q(x)= q'(x,)(x, - %) =p(x,)(x,—x) E
Q(xa)_Q(x2)= qf(xza)(xa_xz) = P (x5) (%, xz) 0:‘
e wns ﬁ
t q(xrl ) - q(xn—l) = q’(xn—ln )(xn - xn—l) = p(xn—ln )(xn - xn—l)
q(x,)-q(x,) Always equal Approximate area
l l Infinitely fine sections

q(b)-q(a) <«—— Equal —— Exactarea

This corresponds to the diagram in step 5.
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USING INTEGRAL FORMULAS

FORMULA 3-1: THE INTEGRAL FORMULAS
O ["f(x)ax+ | f(x)ax=]" f(x)dx

The intervals of definite integrals of the same function can be
joined.

@ ['{f(x)+g(x)}dx=[ f(x)ax+[ g(x)ax

A definite integral of a sum can be divided into the sum of defi-
nite integrals.

© [laf(x)dx=af f(x)dx

The multiplicative constant within a definite integral can be
moved outside the integral.

Expressions ® through © can be understood intuitively if we draw their

figures.
o h
e
a b c a b (-
° ]
Area for g _ glx)
J =
Area for f
a b )
. of (x)
Area is
S < muitiplied
by a.

USING THE FUNDAMENTAL THEOREM OF CALCULUS 495



THAT EXPLANATION
WAS A LITTLE
WHEW! WE INTENSE, BUT YOU
ARE ALL DONE. UNDERSTOOPD T,
FUTOSHI, HELP DIDN'T YOU?
YOURSELF TO
SOME SHOCHLU.

EVEN I CAN
FEEL IT!
UH OH...

THIS WAS MY
SHOCHU IN THE
FIRST PLACE.

I'VE JUST REMEMBERED
A TASK FOR YOU.

WILL YOU GO TO THE

REFERENCE ROOM?

P ——

=
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REFERENCE
ROOM

NORIKO, I REMEMBER THAT
ABOUT A YEAR AGO, A GROUFP
OF RESEARCHERS AT SANDA
ENGINEERING COLLEGE
ALSO ANALYZED WIND
CHARACTERISTICS AND USED
THEIR RESULTS TO DESIGN
BUILDINGS. WILL YOU FIND OUT
HOW THEIR RESEARCH HAS
PROGRESSED SINCE THEN?

WHY DO THEY
KEEP BRUSHING
ME OFFI?

KAKERU SEKI... /
THIS IS AN ARTICLE | / Wﬁéé&??”
MR. SEKI WROTE.

THE REFERENCE ROOM 97



\.
TR \Y W
\\ \\\‘ \L e

BURNHAM...
THEY'RE ONE OF THE
SPONSORS OF THE
ASAGAKE TIMES.

OF ALL THE
COMPANIES IN JAPAN,
MR. SEKI WROTE AN
ARTICLE ACCUSING
OUR BIGGEST
ADVERTISER.

 T\_THIS BRANCH OFFICE.

THAT MUST BE WHY HE
WAS TRANSFERRED TO
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HAVE YOU FOUND
ANYTHING?

NO, WELL...AH...
THEY PROPOSED

50, WHAT KIND OF
ARCHITECTURE ARE I DON'T...KNOW.
INTERESTING IDEAS,

THEY USING?

SUCH AS CONSTRUCTING
A BUILDING THAT
HARNESSES THE WIND TO
REDUCE THE HEAT-ISLAND
EFFECT-HOW URBAN
AREAS RETAIN MORE HEAT
THAN RURAL AREAS.

AH, I..I WILL CALL THEM?
IMMEDIATELY CALL CALL THEM?!
THEM TO ASK ABOUT IT.
I PROMISE.

OH, THAT'S GOOPD.
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FORGET ABOUT CALLING!!
YOU WRITE ARTICLES USING
YOUR FEET!

GO SEE
THEM FOR AN
INTERVIEW!!

AND AS PUNISHMENT,
FIND OUT IF THEIR
THEORY CAN BE
WRITTEN USING
EQUATIONS!!

YES, SIR!
I'M ON MY WAY.
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APPLYING THE FUNDAMENTAL THEOREM

.20 YOU'RE
TALKING ABOUT
SUPPLY AND
DEMAND, RIGHT?

EXACTLY! IN
ECONOMICS, THE
INTERSECTION OF
THE SUPPLY AND

PEMAND CURVES 1S
SAID TO...

DETERMINE THE
PRICE AND QUANTITY
AT WHICH COMPANIES
PRODUCE AND
SELL 6O0DS.

THAT'S

5URE, I GET
Y BUT THIS IN TRUTH, SOCIETY
THTDEQG'C DOESN'T JUST |5 BEST SERVED

‘ MEAN THAT IF TRADE MATCHES

TRADE 1S5 MADE THESE IDEAL

AT THE POINT CONDITIONS.

OF THEIR
INTERSECTION.

CAN EASILY
UNDERSTAND
WHY THIS 15
TRUE USING THE
FUNDAMENTAL
THEOREM OF

EAT!
R CALCULUS.
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SUPPLY CURVE

FIRST, LET'S CONSIDER HOW COMPANIES MAXIMIZE
PROFIT IN A PERFECTLY COMPETITIVE MARKET. WE'LL
TRY TO PERIVE A SUPFLY CURVE FIRST.

The profit P(x) when x units of a commodity are produced is given by the fol-
lowing function:

A

(Profit) = (Price) x (Production Quantity) — (Cost) = px - C(x)

where C(x) is the cost of production.

Let's assume the x value that maximizes the profit P(x) is the quantity of
production s.

A company wants to maximize its profits. Recall that to find a function’s
extrema, we take the derivative and set it to zero. This means that the com-
pany’s maximuim profit occurs when

P'(s)=p-C’'(s)=0

p (Price)
y p= C’(s) THE FUNCTION p = C’(s) OBTAINED
ABOVE |5 CALLED THE SUFFLY
p CURVE!
1 A
e
(1]
5 » s (Optimum production
s

1 volume by companies)

Price p, corresponds to point A on the function, which leads us to opti-
mum production volume s,.
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The rectangle bounded by these four points (p,, A, s;, and the origin)
equals the price multiplied by the production quantity. This should be the
companies’ gross profits, before subtracting their costs of production. But
look, the area @ of this graph corresponds to the companies’ production
costs, and we can obtain it using an integral.

[*C'(s)as=C(s,)-C(0)=C(s,) =Costs

We used To simplify,
the Fundamental we assume
Theorem here. C(0) =0.

This means we can easily find the companies’ net profit, which is repre-
sented by area @ in the graph, or the area of the rectangle minus area ©.

DEMAND CURVE

Next, let’s consider the maximum benefit for consumers.
When consumers purchase x units of a commodity, the benefit B(x) for
them is given by the equation:

B(x) = Total Value of Consumption - (Price x Quantity) = u(x) - px

where u(x) is a function describing the value of the commodity for all
consumers.

Consumers will purchase the most of this commodity when B(x) is
maximized.

If we set the consumption value to t when the derivative of B(x) = 0, we
get the following equation:”

THE FUNCTION p = u’(t) OBTAINED HERE IS
CALLED THE PEMAND CURVE.

* Again, you can see we're looking for extrema (where B’(t) = 0), as consumers want to maxi-
mize their benefits.
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p (Price)

-~

P,

ps » t (Optimum consumption)
t

So let’s consider the area of the rectangle labeled &, above, which corre-
sponds to the price multiplied by the product consumption. In other words,
this is the total amount consumers pay for a product.

The total area of ® and @ can be obtained using integration.

_[: u'(t)dt =u(t,)-u(0)=u(t,) = Total value of consumption
L
To simplify,

we assume
u(0) = 0.

If you simply subtract the value of the rectangle ® from the integral
from O to t,, you can find the area of @, the benefit to consumers.

THE BENEFIT FOR THE
CONSUMERS @ 1S5 THE TOTAL

VALUE OF CONSUMPTION MINUS YES, THAT'S IT. NOW LET'S
> LOOK AT THE SUPPLY
THE AMOUNT THEY PAID ©, RIGHT? L
COMBINED TOGETHER.
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p (Price) Supply curve

WE CAN SAY THAT THE COMPANIES' i
PROFIT PLUS THE BENEFIT FOR
CONSUMERS EQUALS THE OVERALL

BENEFIT FOR SOCIETY, AS ILLUSTRATED Benefit
BY THE SHADED AREA ON THE RIGHT. DRy E
ﬁft:ggames :
/ ) Demand curve

> Quantity

BUT WHAT HAPPENS IF TRADE
DOES NOT HAPFEN AT THE PRICE
AND QUANTITY DETERMINED BY
THE INTERSECTION POINT E?

Loss of
THE OVERALL BENEFIT TO SOCIETY :
15 REDUCED BY THE AMOUNT A benefit to
CORRESPONDING TO THE EMPTY AREA society
IN THE FIGURE.
p F
/ : [
: G
X >
D ; I ALSO THINK
© You GET IT2 VELOCITY AND
FALLING BODIES
ARE GOOD 0
TOPICS TO WRITE
ABOUT.

YES, I WILL
REPORT MY

STORIES USING
CALCULUS, TOO.

I'M GOING TO
LOOK INTO THEM!
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¥50, THE CALCULUS NEWS-GAZETTE

Vol. 1

The Integral of Velocity
Proven to Be Distance!

The integral of velocity = difference in
position = distance traveled

If we understand this formula, it's
said that we can correctly calculate the
distance traveled for objects whose veloc-
ity changes constantly. But is that true?
Our promising freshman reporter Noriko
Hikima closes in on the truth of this mat-
ter in her hard-hitting report.

Figure 1: This graph represents
Futoshi’'s distance traveled over
time. He moves to point y,, y,. Ys...
as time progresses to x;, X,, X5...

Sanda-Cho—Some readers will recall our
earlier example describing Futoshi walk-
ing on a moving walkway. Others have
likely deliberately blocked his sweaty
image from their minds. But you almost
certainly remember that the derivative of
the distance is the speed.

© y=F(x)
® ['v(x)ax=F(b)-F(a)

Equation @ expresses the position of
the monstrous, sweating Futoshi. In other
words, after x seconds he has lumbered a
total distance of y.

Integral of Velocity = Difference in Position

The derivative F’(x) of expression @
is the “instantaneous velocity” at x sec-
onds. If we rewrite F'(x) as v(x), using v for
velocity, the Fundamental Theorem of Cal-
culus can be used to obtain equation @!
Look at the graph of v(x) in Figure 2-A—
Futoshi's velocity over time. The shaded
part of the graph is equal to the integral—
equation @,

But also look at Figure 2-B, which
shows the distance Futoshi has traveled
over time. If we look at Figures 2-A and
2-B side by side, we see that the integral
of the velocity is equal to the difference in
position (or distance)! Notice how the two

graphs match—

when Futoshi’'s
Velocity . Distance velocity is posi-
y y tive, his dis-
- A tance increases,
h [Area} = [Du’ference] and vice versa.
y = F(x)
e ;
A
i
3

Figure 2




The Calculus News-Gazette

Free Fall from Tokyo Tower
How Many Seconds to the Ground?

It's easy to take things for granted—
consider gravity. If you drop an object from
your hand, it naturally falls to the ground.
We can say that this is a motion that
changes every second—it is accelerating
due to the Earth’s gravitational pull. This
motion can be easily described using
calculus.

But let’s consider a bigger drop—all the
way from the top of Tokyo Tower—and find
out, “How many seconds does it take an
object to reach the ground?” Pay no atten-
tion to Futoshi’s remark, “Why don’t you go
to the top of Tokyo Tower with a stopwatch
and find out for yourself?”

The increase in velocity when an
object is in free fall is called gravitational
acceleration, or 9.8 m/s’. In other words,
this means that an object’s velocity
increases by 9.8 m/s every second. Why is
this the rate of acceleration? Well, let’s just
assume the scientists are right for today.

Expression @ gives the distance the
object falls in T seconds. Since the integral
of the velocity is the difference in position
(or the distance the object travels), equa-
tion @ can be derived. Look at Figure 3—
we’ve calculated the area by taking half of
the product of the x and y values—in this
case, % x 9.8t x t. And we know that the
height of Tokyo Tower is 333 m. The square
root of (333 / 4.9) equals about 8.2, so an
object takes about 8.2 seconds to reach
the ground. (We've neglected air resistance
here for convenience.)

Section Al

© F(T)-F(0)=] v(x)dx=| 9.8(x)dx

® 4.9T* -4.9x0%=4.9T?

333=49T*=T-=

333

—— =8.2 seconds
4.9

Velocity v(x) = 9.8x

Area of the velocity
9.8t x t x Y2 = 4.9¢2

Distance

Distance
fallen

4.9¢*

Time

Figure 3




The Calculus News-Gazette

ey

Section Al

The Die Is Cast!!!

e e G e

R

J(x)
The Fundamental
Theorem of Calculus
Applies to Dice, Too
You probably remem- Y b
ber playing games with dice 1 2

as a child. Since ancient

3456

times, these hexahedrons
have been rolled around the
world, not only in games, but

Figure 4: Density function

Figure 5: Distribution function

also for fortune telling and
gambling.

Mathematically, you can
say that dice are the world’s
smallest random-number
generator. Dice are wonder-
ful. Now we’ll cast them for
calculus! A die can show a 1,
2, 3, 4, 5, or 6—the probabil-
ity of any one number is 1 in

Slx)

Density function

Distribution function

6. This can be shown with 1
a histogram (Figure 4), with
their numbers on the x-axis
and the probability on the
y-axis.

S(8)+ f(4)+ 5 (5)=F(5

This can be expressed by
equation @, or f(x) = Probabil-
ity of rolling x. This becomes
equation ® when we try to
predict a single result—for
example, a roll of 4.

® f(x)=Probability of rolling x
1
0 f(4)= i Probability of rolling 4

Now let’s take a look at Figure 5, which
describes a distribution function. First,
start at 1 on the x-axis. Since no number
less than 1 exists on a die, the probability
in this region is 0. At x = 1, the graph jumps
to 1/6, because the probability of rolling a
number less than or equal to 1is 1 in 6. You
can also see that the probability of rolling
a number equal to or greater than 1 and
less than 2 is 1/6 as well. This should make
intuitive sense. At 2, the probability jumps
up to 2/6, which means the probability for
rolling a number equal to or less than 2 is
2/6. Since this probability remains until

Figure 6: Derivative of distribution function F(x)
= density function f(x)

right below 3, the probability of numbers
less than 3 is 2/6.

® [ f(x)ax=F(b)-F(a)

= Probability of rolling x wherea<x<b

In the same way, we can find that the
probability of rolling a 6 or any number
smaller than 6 (that is, any number on the
die) is 1. After all, a die cannot stand on
one of its corners. Now let's look at the
probability of rolling numbers greater than
2 and equal to or less than 5. The equation
in Figure 6 explains this relationship.

If we look at equation ©, we see that it
describes what we know—"A definite inte-
gral of a differentiated function = The dif-
ference in the original function.” This is
nothing but the Fundamental Theorem of
Calculus! How wonderful dice are.
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m

f/‘/

'f \‘ D

=

i
I

NO WAY!
YIPES!

4 / T - -+
._ | /

2 ONLY 15 MINUTES
5 JUST A DREAM.. /’ TO GET THERE!

1 HAVE TO REPORT
ON THE $ANDA-CHO

SUMMER FESTIVAL. I'M COMING,

MR. SEKI!
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REVIEW OF THE FUNDAMENTAL THEOREM OF CALCULUS
When the derivative of F(x) is f(x), that is, if f(x) = F'(x)
[ 7 (x)ax=F(b)-F(a)
This can also be written as

['F'(x)dx =F(b)-F(a)

a

These expressions mean the following.

(Differentiated function) dx
= Difference of the original function between b and a

It also means graphically that

Change in the original
function from a to b

Area surrounded by the differentiated function
and the x-axis, betweenx=aandx=b

y=f(x)=F(x)

y r
y
1 y=F(x)
: 1) — ‘
i L L : x !
a b
Fundamental \I F(a)
Theorem e : 5 ; R
of Calculus . _[b f, (x)dx &= - 5
R Difference in the

original function
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FORMULA OF THE SUBSTITUTION RULE OF INTEGRATION

When a function of y is substituted for variable x as x = g(y), how do we
express

b
S=[f(x)dx
a definite integral with respect to x, as a definite integral with respect to y?

First, we express the definite integral in terms of a stepwise function
approximately as

S = E Flx % -%) (% =8.%,=b)

k=0,1,2,....,n-1
Transforming variable x as x = g(y), we set
Yo =YYy Y, = B
so that
a=g(a)x,=g(4).x; =9(ys):--b = g(B)
Note here that using an approximate linear function of
X1 = X = 9 (Ueir ) = 9(Ue) = ' (U5 ) (s — )
Substituting these expressions in S, we get

S = Z f(xk)(xkn 7xk) = 2 f(g(yk))g’(yk)(yml _yk)

k=0,1,2,...n-1 k=0,1.2,...n-1
The last expression is an approximation of
B ’
[, f(g(v))g'(v)ay

Therefore, by making the divisions infinitely small, we obtain the follow-
ing formula.

FORMULA 3-2: THE SUBSTITUTION RULE OF INTEGRATION

[P r(x)ax=[" f(g(y))g (y)dy

FORMULA OF THE SUBSTITUTION RULE OF INTEGRATION

m



EXAMPLE:
Calculate:

[(10(2x+1)" ax
0

y-1
2

We first substitute the variable so that y =2x + 1, or x = g(y) =

Since y = 2x + 1, if we take the derivative of both sides, we get

dy = 2dx. Then we get dx = %dy.

Since we now integrate with respect to y, the new interval of integra-
tion is obtained from 0 = g(1) and 1 = g(3) to be 1 - 3.

t 3 1 3
[,10(2x+1)" dx = [[10y* - dy =[ 5y'dy =3° - 1° = 242

THE POWER RULE OF INTEGRATION

In the example above we remembered that 5y4 is the derivative of y5 to finish
the problem. Since we know that if F(x) = x", then F'(x) = f{x) = nx"* ", we
should be able to find a general rule for finding F(x) when f(x) = x".

We know that F(x) should have *m D in it, but what about that coef-
ficient? We don’t have a coefficient in our derivative, so we’ll need to start
with one. When we take the derivative, the coefficient will be (n + 1), so it
follows that 1 / (n + 1) will cancel it out. That means that the general rule for
finding the antiderivative F(x) of f(x) = x" is

n+l
1 (n+1) = xn+l

* In other words, when x = 0, y = 1, and when x = 1, y = 3. We then use that as the range of our
definite integral.
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EXERCISES

1. Calculate the definite integrals given below.
Yo
1] _[ 3x dx
1

J~4x3+1

dx
2 x2

© f:x+(1+x2)7dx+_|-:x7(1+x2)7dx

z. Answer the following questions.

A. Write an expression of the definite integral which calculates the area
surrounded by the graph of y = f(x) = x* - 3x and the x-axis.

B. Calculate the area given by this expression.
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USING TRIGONOMETRIC FUNCTIONS

ER|
THUMZA
O

2333

WHEW! I MADE [T,
JUST IN TIME.

UGH...IT'S HOT. I WANNA PUT

ON A YUKATA,
TOO.

b\

* YUKATA IS TRADITIONAL JAPANESE SUMMER WEAR.

\ NORIKO, YOU'RE HERE. EAH...SINCE EA
IT WAS NICE OF YOU TO égﬂi pHoNE,IIHQXN’T
CALL AND LET ME KNOW REALLY GET AWAY

FROM YOU.

YOU MIGHT BE RUNNING
LA
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WHEN I WAS A CUB 1 READ MY REPORT

REPORTER, THERE

WASN'T SUCH A
CONVENIENCE.

WORD BY WORD OVER !
THE PHONE TO MY i
ASSISTANT.

I OFTEN HAD TO
USE A PAY PHONE
TO SEND IN MY
REPORT WHEN 1
WAS ON DEADLINE.

WE DON'T
HAVE TO
DO THAT
ANYMORE,
THANKS TO
RADIO WAVES.

WOW, THAT'S
CRAZY!

YEAH!
ALL SORTS OF OCEAN WAVES,
OTHER WAVES OCCUR EARTHQUAKES,
IN NATURE, TOO. SOUND WAVES...
AND LIGHT.
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THOSE WAVES CAN
BE DESCRIBED WITH
FUNCTIONS, FOR
EXAMPLE, WITH THE
COSINE OF THETA
(cos 6). DID YoU
KNOW THAT?

UH, I HAVE TO GO
BACK TO WORK.

NORIKO! INCIDENTALLY, IF YOU
CUT OUT A SLEEVE OF
A BLOUSE, THE CUT
END 1S9 A GRAPH OF
cos 0.

TRIGONOMETRIC
FUNCTIONS ARE
VERY IMPORTANT
FOR FASHION!
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NORIKO, TAKE A
PICTURE OF THAT!
ITS cos 6.

GOOPD OPPORTUNITY.

LOOK AT THE
DANCERS. THIS 1S A

WE CAN STUDY
THE APPLICATION
OF FUNCTIONS
TOGETHER WHILE

REPORTING,

| You AND YOUr
FUNCTIONS!!!

CALLED A
RAPIAN.

THERE 15

A UNIT OF
MEASUREMENT d - OH, SHOOT! I'M
FOR ANGLES }/ a TAKING NOTES

_ OUT OF HABIT.

SHOCKED!

CONSIDER A CIRCLE
OF RADIUS 1 WITH
TS CENTER AT (0, 0).
SUPPOSE THAT WE
START AT POINT A AND
TRAVEL TO POINT P ON
THE CIRCUMFERENCE
OF THE CIRCLE,
CORRESPONDING TO
THE ANGLE 0.

FOR A CIRCLE WITH
RADIUS =1, THE
LENGTH OF THE

ARC AP EQUALS
THE ANGLE 6 IN
RADIANS!
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BECAUSE THE TOTAL
CIRCUMFERENCE OF THIS
CIRCLE IS 21, WE KNOW THAT
A0 DEGREES = ;, RADIANS
AND 180 DEGREES =
n RADIANS. A RADIAN |15
ABOUT EQUAL TO 57.2958
PEGREES.

FROM NOW ON,

WE WILL UsE (

RADIANS AS THE
UNIT FOR ANY
ANGLE.

-.:«r-k’

|
|

~=

|
|

AND WE CAN EXPRESS
x AS THE FUNCTION
cos 0 = x. THAT MEANS
WHEN A DANCER MOVES
BY 0 RADIANS, SHE 19 AT
A HORIZONTAL POSITION
DETERMINED BY cos 0.
YOU BETTER
REMEMBER
THIS!

OH, THAT'S WHY YOU
GHOUI:EZ’B‘IHATQ ON INSIDE HIS
o HEAD?

WHAT'S GOING

IN THE SAME WAY,
THE DANCER'S
VERTICAL
POSITION CAN
BE EXPRESSED
AS THE FUNCTION
sin 8 = y.
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BEAUTIFUL!

BEAUTIFULI?

%/}’??/%///////?IIM\W\\\\\\\\\\\\\\

YES! AS 0 BECOMES LARGER, THE VALUE
OF cos 8@ CHANGES FROM 1, GRADUALLY
BECOMES SMALLER UNTIL IT'S 0, GOES ALL
THE WAY DOWN TO -1, BACK TO 0, THEN
BACK TO 1 AGAIN!

= (2 (3]
> L = | > D : A
RIGHT. AND SINCE AWW! THE OLD
50, cos 0 TRIGONOMETRIC LADIES THINK YOU'RE Bgf@r‘;{%u
VIBRATES FUNCTIONS EXPRESS TALKING ABOUT :
BETWEEN WAVES, THEY CAN THEM, AND THEY'RE
1 AND 1, BE USED AS A TOOL BEAMING!
DOESN'T IT? FOR CLARIFYING
MANY THINGS IN e &
NATURE. Yol
iy &/ \
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\

IT'6 A PRETTY T
BIG FESTIVAL, o
ISN'T IT? S

YES. BUT, WHY
DO YOU HAVE
DRUMSTICKS?

cos 67

STICK MULTIPLIED BY /- .*.". \

BECAUSE IT'S A
FESTIVAL! 1 5EE..
DID YOU KNOW THAT
ankggﬂ%gi YES, IT'S RATHER THEN, LET'S
\t! DRUMSTICK EQUALS SURPRISING, BUT FIND THIS
THE LENGTH OF THE 1 REMEMBER IT ACCURATELY.

VAGUELY.
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THE SUN 1S SHINING
STRAIGHT POWN ON
STICK AB, WHICH 15
STANDING TILTED AT
ANGLE 6 FROM THE
GROUND.

IF WE ASSUME THE

RESULTING SHADOW

(THE ORTHOGONAL
PROJECTION) TO BE AC,
THE LENGTH OF SHADOW
AC EQUALS THE LENGTH
OF STICK AB MULTIPLIED

BY cos 0.
WE CAN THINK OF THE
y STICK IN TERMS OF THAT'S RIGHT!
L A FUNCTION. COSINE
AND BY DEFINITION, EXPRESSES HOW
1 B MUCH SHORTER
cosg = AC (shadow) THE SHADOW 15
AB (stick) THAN THE STICK
ITSELF!

FF i 50 THE SHADOW'S

LENGTH IS AB x cos 6.
RIGHT?

s :

cos C

USING TRIGONOMETRIC FUNCTIONS 123



INCIDENTALLY, SINCE THE
X-AXIS COINCIDES WITH
THE Y-AXIS WHEN IT IS

ROTATED BY 90 DEGREES

(3 RADIANS), WE CAN
SAY sin 0 15 A FUNCTION
THAT OUTPUTS, DELAYED
BY 5, THE SAME VALUES

AS cos 6.

IN O_THE’R WORDS,
sin{ﬂ +HJ= cosf
2

| \
Sin(6+F)=CoSQ
/ Cos(® +5)

A\ =-S5l

UH..WILL YOU GIVE
US BACK OUR
PRUMSTICKS?

- r -~
) N

1%

S
L

NOW, WE ARE READY
FOR THE MAIN PART OF
THE SANDA SUMMER
FESTIVAL!
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USING INTEGRALS WITH TRIGONOMETRIC FUNCTIONS

HERE ARE SPECIAL
SEATS FOR YOU. BE
CAREFUL NOT TO
FALL, REPORTERS,
AND TAKE GOOD
PICTURES.

OKAY. WE WILL.

NOW, WE ARE
GOING TO LOOK AT
cos 0 IN TERMS OF
CALcCULUS!

MR. SEKI,
YOUR ACTIONS
ARE TOTALLY
PIFFERENT FROM
WHAT YOU SAY.

IN FACT, INTEGRALS ARE
EASIER TO OBTAIN THAN
DERIVATIVES.

IT'S EASIER TO
UNDERSTAND |F
WE LOOK DOWN
AT THE CIRCLE OF
DANCERS FROM
WAY UP HERE.

27
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WHAT WE NEED TO DO IS TO FIND OUT WHAT
2 cos 0 x Af = cos 6, (6, - 6,) + cos 6, (6, - 6)) + ...
+cos 0, (6,0, _,) BECOMES,

LOOKING AT THIS
PUTS ME IN A
FOG.

LOOK AT THIS
FIGURE. DOESN'T
THIS GIVE YOU A
GOO0PD IPEAT THIS
SHOWS THAT THE

INTERSECTING

ANGLE OF THE
Y=AXIS WITH THE
TANGENT LINE PQ,
WHERE P IS THE

(1, 0) BY ANGLE 0,
IS ALSO 0.

POINT MOVED FROM

At angle 0,
with the y-axis

A’Z
Length 6, - 6,
A
A1 53 e 52 /\ 1
8, -0,
8, -4 AU > x

The change in cos 0 is the length A’ A',.
That length is the orthogonal projection A A,.
Length A'A’, ~arc AA, x cos 0, = (0, - 0)) x cos 8,

CHOW MEIN
T T,

B S O
[

FUTOSHI! WHY DOES
HE GET TO EAT CHOW
MEIN WHILE 1 HAVE
TO LEARN ABOUT
INTEGRALS?
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A (cos @, sin ) = (cos a, sin a)

LET'S USE THIS "
TO INTEGRATE

d 2

FROM 0 TO a. ///\
' A, (cos d, sin §)

: 7‘%//\

a

» X

A, (cos 6, sin 4) = (1, 0)

Y cos #Ad when 6 is changed from 0 to « )
RIGHT! IF WE

cosf,(0,-6)+cost (6,-0)+..+cosd_ (6 -6 ) | | MAKE THESE ‘IWHEE Tﬁggﬁzﬂ
INFINITELY OF COSINE 15
~A A +A A, +..+A" A=A A" =sina SMALL... SINE.

j: cos5df=

Sinck— sin0

YOU'RE
RIGHT!
THEN, TO PUT IT THE
OTHER WAY AROUND, THE NOW,
DERIVATIVE OF SINE |5 REMEMéER
COSINE?
THESE
FORMULAS.
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FORMULA 4-1: THE DIFFERENTIATION AND INTEGRATION OF TRIGONOMETRIC FUNCTIONS

o
Since @ L cos0df = sino - sin 0, we know that sine must be cosine’s derivative.

(2] (sin@), =cosf

7

{sm[mgj} [95)

T
Now, substitute 0 + 5 for 0 in @. We get
Using the equations from page 124,
we then know that
(3] (cos@), =-sinf

We find that differentiating or integrating sine gives cosine and vice versa.

ALL RIGHT! LET'S
PO THE CALCULUS
DANCE SONG!!

CALCULUS DANCE SONG

TRIGONOMETRIC VERSION
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JUMP AND JUMP AGAIN

TURN TO AND CLAP

THE LEFT. YOUR HANDS
TWICE.




CALC g

LC
C4(.Ca£(/s A

THE DANCE SONG MAKES
BORING LOGIC EASIER!
CALC, CALCULUS. YAY!

CIRCLE OF SINE,
COSINE DOES
INTEGRATION! RAISE

BOTH ARMS TO FORM

A CIRCLE.

DIFFERENTIATION J*
OF SINE IS
COSINE. FORM
AN 5 WITH BOTH
ARMS.

DIFFERENTIATION
OR INTEGRATION
INTERCHANGES

COSINE INTEGRAL
BECOMES SINE.
FORM A € WITH

BOTH ARMS.

I:cos 6df = sin x

J

SINE AND COSINE.,
RAISE AND LOWER A
YOUR ARMS.
%

USING INTEGRALS WITH TRIGONOMETRIC FUNCTIONS 129




NO, I CANT. 1 WE CAME HERE
HAVEN'T EATEN TO REPORT!
EVEN HALF THE
FOOPD AT THESE
STANDS.

FUTOSHI, LET'S
DANCE!

YEAH, WELL,
YOU'RE THE ONE
WEARING DANCING
CLOTHES!

CuT IT oUT! YOU
TWO HAVEN'T EVEN
STARTED WORKING.
WE DON'T HAVE
MUCH TIME BEFORE
TOMORROW'S
MORNING PAPER!

YOU TWO ARE
ENJOYING THE
FESTIVAL TOO MUCH!
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PCe AND THE
INTERNET HAVE
REALLY CHANGED
REPORTERS'
WORK.

WHEW!
I SENT MY STORY.

BY THE WAY...

OH, I KNOW A
LITTLE B/T ABOUT
COMPUTERS.

THE INFORMATION
HANDLED BY COMPUTERS
IS EXPRESSED IN TERMS

OF TWO DIGITS: 0 AND 1, [}1
-5 -\ ORSEQUENCES OF BIT5. /- |

01

iy

NO REACTIO

00010107 010100 G
000010143 AA0101011
Ul X\
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IF WE SUPPOSE f(x)
15 THE NUMBER OF
VALUES THAT CAN BE

THE BINARY SYSTEM, ONE Th AR EXPRE%E_D %Y A
....... THEN f(x) = 2%, WHICH
BIT CAN REPRESENT TWO [ N1 4 |V H-.-.coo0 o IS AN EXPONENTIAL
NUMBERS (0 AND 1); TWO _ FUNCTION.
BITS CAN REPRESENT |y ' ./ [0
FOUR (00, 01, 10, A
AND 11); THREE BITS CAN !
REPRESENT EIGHT; AND e

SINCE COMPUTERS 4 .. DDt

HANDLE INFORMATION IN [y / V 7 Q- - - - -

n BITS CORRESPOND TO ...
2" POS5|BLE NUMBERS., ", E);chg%fg:f L
o
EXPONENTIAL
LET ME SEE...
FUNCTION? AN EXPONENTIAL FOR EXAMPLE...
FUNCTION CAN
EXPRESS AN
INCREASE LIKE

ECONOMIC
GROWTH.

IN THE 19505 IN
JAPAN, WE HAD A HIGH
RATE OF ECONOMIC
GROWTH: ABOUT /|
10 PERCENT AYEAR./ |

A PERSON WITH AN
ANNUAL INCOME OF
¥5 MILLION ONE YEAR
EARNED ¥5.5 MILLION
THE NEXT YEAR.

o ) HIS SALARY INCREASED
L Al 10 PERCENT, AND HE
- COULD ENJOY 10 PERCENT
- g \ MORE COMMOPITIES AND
§ A HH\  SERVICES THAN IN THE
PREVIOUS YEAR.
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WE HAD SUCH GOOoPp
DAYS! T WOULD HAVE
BOUGHT A WHOLE
NEW WARDROBE
AND LOTS OF

XA PON'T GET TOO
ol EXCITED.

OTHER THINGS!

SUPPOSE THE ECONOMIC
GROWTH 15 10 PERCENT,
AND THE PRESENT GROSS
DPOMESTIC PROPUCT 15
Go. IN A FEW YEARS,

IT WILL CHANGE AS
FOLLOWS.

G, =Gyx11

Gross domestic product after 1 year
G, =0, % 1.1 =G; % 13°

Gross domestic product after 2 years
G; =Gy x 1.1°

Gross domestic product after 3 years
G,=G,x 11"

Gross domestic product after 4 years
G5 = Gy x 1.1°

Gross domestic product after 5 years

THEN, WHAT |15 THE
GROS5 DOMESTIC
PRODUCT AFTER
n YEARS IN
GENERAL?

D

G, =Gy x 1.17, OR 195
TIMES G, 9O THE GDP
NEARLY POUBLED IN

JUST 7 YEARS.

DOUBLED?
WOW! WHAT
WOULD I BUY
IF MY SALARY
PoOUBLED?

S0, A FUNCTION IN
A FORM LIKE
fix) = apa’

IS CALLED AN
EXPONENTIAL
FUNCTION.

AN ECONOMY HAVING
AN ANNUAL GROWTH
RATE OF a 15
EXPRESSED WITH THE
EXPONENTIAL FUNCTION

J) = a,l + a)*,
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BITS ARE ALSO

e

AN EXPONENTIAL IBIVERGE
I JUST TOLD YES, 1 BIT FUNCTION. IF x BITS FUNCTION
YOU THAT BITS 15 FOR 2 CORRESPOND TO f(x)
ARE CODES FOR PATTERNS, POS5IBLE NUA;\BEFZG,
EXPRESSING 2 BITS THEN fl(x) = 2% YOU
INFORMATION. FOR 4 KNOW, THERE IS A
PATTERNS. FUNCTION CALLED AN

INVERSE FUNCTION,
WHICH TURNS WHAT
YOU CALLED PATTERNS,
BACK INTO BITS.

IT'S EASY—YOU JUST
NEED TO THINK THE
OTHER WAY AROUND.

Z PATTERNS w 1BIT
50, WE CAN
REPRESENT
2" POS5IBLE
NUMBERS USING
n BITS.

4 PATTERNS = Z BITS

8 PATTERNS = 3 BITS

NOW, ASSUME g(y)
15 THE INVERSE
FUNCTION OF f(x),
WHICH TURNS y
PATTERNS BACK
INTO BITS. TRY IT.

WE GET g(2) = 1,
g(l6) =4...

50, THE RELATIONSHIP
BETWEEN f AND g CAN BE
EXPRESSED AS g(flx) = x
AND flg(y)) = y.

REMEMBER NOW
THAT THE INVERSE
FUNCTION OF AN
EXPONENTIAL
FUNCTION 15 CALLED
A LOGARITHMIC
FUNCTION AND 15
EXPRESSED WITH
THE SYMBOL log.

RIGHT, AND log,2 = 1,
10g24‘ = 2. 10g28 = 3,
log,16 = 4...

IN THE ABOVE
CASE, IT 15
EXPRESSED AS

gly) =log,y.
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GENERALIZING EXPONENTIAL AND LOGARITHMIC FUNCTIONS

~
( ALTHOUGH EXPONENTIAL AND LOGARITHMIC
FUNCTIONS ARE CONVENIENT, OUR DEFINITION OF
THEM UP TO NOW ALLOWS ONLY NATURAL NUMBERS
FOR x IN f(x) = 2 AND THE POWERS OF Z FOR y
IN g(y) = log,y. WE DON'T HAVE A DEFINITION FOR
THE —8th POWER, THE 7/3rd POWER OR THE +/2th
POWER, log,5, OR log,m.

( I WILL TELL YOU HOW WE
R DEFINE EXPONENTIAL AND
LOGARITHMIC FUNCTIONS IN

HMM, WHAT DO q L GENERAL, USING EXAMPLES,
WE DO, THEN? @

GLAD THAT YOU ASKED AM I.
THE POWER OF CALCULUS WE USE
FOR THIS. YES.

FIRST, USING OUR EARLIER EXAMPLE, LET'S CHANGE THE ECONOMY'S
ANNUAL GROWTH RATE TO ITS INSTANTANEOUS GROWTH RATE.

Value after 1 year - Present value S(x+1)- f(x)
Annual growth rate = =

Present value B S(x)

THIS 1S THE EXPRESSION
WE START WITH.
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NOW WE DEVELOP THIS INTO THE INSTANTANEOUS
GROWTH RATE, AS FOLLOWS.

Instantaneous growth rate

Value slightly later — Present value
Present value

= Idealization of [ + Time elapsed]

- Result obtained by letting ¢ — 0 in [MJI

J(x) €

50, WE DEFINE THE  f/(x)
INSTANTANEOUS
GROWTH RATE A5 J (%)

Now, let’s consider a function that satisfies the instantaneous growth
rate when it is constant, or

S'(x)
S(x)

Here we assume ¢ = 1, and we
will find f(x) that satisfies

=c¢ where c is a constant.

S'(x) FIND f(x)? BUT HOW DO
Tl WE FIND IT?

. We first guess this is an exponential function.

SINCE f'(x)= f(x), ® f'(0)= f(0)
NOW, RECALL THAT WHEN h WAS CLOSE ENOUGH TO ZERO,
WE HAD f(h)~ f'(0)(h-0)+ f(0)
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From @, we have f(h)= f(0)h+ f(0) an-d get
e f(n)=f(0)(h+1)
If x is close enough to h, we have
F(x)= () (x - )+ £ (h)
Replacing x with 2h and using f'(h) = _f(h),
f(2h)= f'(R)(2h -h)+ f ()
J(2h)= f(R)(R)+ f(h)
f(2nr)= f(h)(h+1)
We'll then substitute f(h)= f(0)(h+1) into our equation.
S(2h)= f(0)(h+1)(h +1)
f(2h)= f(0)(h +1)*
In the same way, we substitute 3h, 4h, 5h, ..., for x and allow mh = 1.
f(1)=f(mh)=f(0)(h+1)"
Similarly,

f(2)=f(2mh) = f(0)(h+1)"" = f(O){(l + h)m}z

F(3)=f(3mh)= f(0)(h+1)" = f(o){(l - h)’“}3
Thus, we get
f(n)= f(0)a" where weuseda=(1+h"

which is suggestive of an exponential function.”

1 m m

* Since mh =1, h= 7 Then, f(1) :_f(())(1+ i] . If we let m — « here, (1+lJ — e, or Euler’s
m m

number, a number about equal to 2.718. Thus, f(1) = f(0) x e, which is consistent with the dis-

cussion on page 141.
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2. Next we will find out that f(x) surely exists and what it is like.

EXPRESS THE INVERSE FUNCTION
OF y =f(x) AS x = g(y).

FROM f'(x) = f(x) INDICATED ON PAGE 136, THE DERIVATIVE
OF f(x) 15 ITSELF. BUT THIS DOES NOT HELP US. WHAT IS
THE DERIVATIVE OF g(y) THEN?

® d(y= 7o «—{ Since we get this generally,’
o gfgj=—t=—L -1 we get this result. which
LA (x) f(x) y .| shows that the derivative of

the inverse function g(y) is

xplicitly given by —=.
Now, we can use the Fundamental . p.1 ]'.= yglvéétby g
Theorem of Calculus. It gives -

Since we now know g'(y) = 1,
function g(o) is found to Y
be a function obtained by
intégratiﬁg,;:; fromltoo

GOOD! NOW, LET'S DRAW THE GRAPH OF z =— !

[

* As shown on page 75, if the inverse function of y = f(x) is x = g(y), f'(x) g'(y) = 1.
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1
g THIS 1S A GRAPH OF
INVERSE PROPORTION.

LET'S DEFINE g(o) AS THE AREA BETWEEN THIS GRAPH AND
THE Y-AXIS IN THE INTERVAL FROM 1 TO . THIS 1S A WELL-
DPEFINED FUNCTION. IN OTHER WORDS, g(a) 15 STRICTLY
DEFINED FOR ANY o, WHETHER IT 15 A FRACTION OR 2.

SINCE z = L IS AN EXPLICIT FUNCTION, THE AREA CAN BE
Y ACCURATELY DETERMINED.

Since g(1)= _[llldy =0, flaldy = g(a)-g(1) which satisfies ©.
y y
Thus, we have found out the inverse function g(y), the area under the

curve, which also gives the original function f(x).

AH, HOW ABOUT | PLEASE TELL ’
THE RECENT | ME THE TRUTH. YOU'RE
GROWTH RATE 1 WON'T BE CRYING! IS5 IT
OF THE ASAGAKE SURPRISED. THAT BAD?
TIMES?
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SUMMARY OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

%
S (x) is thought to be the growth rate.
S (x)
"2
® y = f(x) which satisfies M = 1l is the function that has a constant
growth rate of 1. (x)

This is an exponential function and satisfies

J(x)=1(x)
® If the inverse function of y = f(x) is given by x= g(y), we have
i 1
g (y) == K
y
1
@ If we define g(«), we can find the area of h(y) = g.
a1
g(a)= _L gdy

The inverse function of f(x) is the function that satisfies * and g(1) = 0.

e 2

We define e (the base of the
natural logarithm) as y that
satisfies g(y) = 1. That is, it
is the « for which the area
between the 1/y curve and
the y-axis in the interval
from 1 to o equals 1.

e is an irrational number
that is about 2.7178.
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Since f(x) is an exponential function, we can write, using constant a,,
f(x)=a,a*
Since f(g(1)) = f(0) = aoao = a, and f(g(1)) = 1, we get
flg(1)=1=a
And so we know
f(x)=a*
Similarly, since
s(gle)=F(1)=a* and
flale))=e
e=a'
Thus, we have f(x)=e".
The inverse function g(y) of this is log,y, which can be simply written as

In y (In stands for the natural logarithm).
Now let’s rewrite ® through @ in terms of e¢* and In y.

’

0 f(x)=Sf(x)e(e) =€

® g(y)= o (ny) -

<

o 1 y 1
® gla) :L “dyeIny= L —dy
y Y
©® To define 2%, a function of bits, for any real number x, we look at

f(x)=€e""" (xis any real number)

The reason is as follows. Because e* and In y are inverse functions to
each other,

eln2 - 2

Therefore, for any natural number x, we have

Flx)= (e'“2 )x =2F
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MORE APPLICATIONS OF THE FUNDAMENTAL THEOREM

Other functions can be expressed in the form of f(x) = x”. Some of them are

1

—1
9"_2'=x
X X

2 1 -
2 = _x?

2 X
— yese
x 3

For such functions in general, the formula we found earlier holds true.

FORMULA 4-Z: THE POWER RULE OF DIFFERENTIATION

f(x)=x" S (x)=ax""

EXAMPLE:
1 i 3
Fi o ’ E b a8
or f(x) = J(x) (x ) 3x 2
For f(x):%/;! f,(x): xi ’ =lx_% ) .
4 44 x3

PROOF:
Let’s express f(x) in terms of e. Noting e™* = x, we have

f(x): x“ :(el"" )ﬂ = g®Inx

Thus,
In f(x)=alnx

1
Differentiating both sides, remembering that the derivative of In w =,

and applying the chain rule,

1 ’ 1

——xfl(x)=ax—

f (JC) ( ) x
Therefore,

f'(x):axle(x)zaxfl—xx“ = g
x x
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INTEGRATION BY PARTS

If h(x) = f(x) g(x), we get from the product rule of differentiation,
R'(x)=f'(x)g(x)+ f(x)g'(x)
Thus, since the function (the antiderivative) that gives f(x) g(x) + f(x) g'(x)

after differentiation is f(x) g(x), we obtain from the Fundamental Theorem of
Calculus,

{5 (x)g(x)+ (x)g'(x)}ax = 7 (b) g (b) - f(a) g (a)

a

Using the sum rule of integration, we obtain the following formula.

FORMULA 4-3: INTEGRATION BY FARTS

[[ £/ (x)g(x)ax+ [ f(x)g'(x)dx =f (b)g(b)- f (a)g(a)

As an example, let’s calculate:

J: xsin x dx
We guess the integral’s answer will be a similar form to x cos x, so we
say f(x) = x and g(x) = cos x. So we try,

T

J: x'cos xdx + J‘:x(cosx)’ dx = f(x)g(x)

0
We can evaluate that
=f(r)g(x)-£(0)g(0)
Substituting in our original functions of f(x) and g(x), we find that
=nrcost-0cosO=n(-1)-0=-7
We can use this result in our first equation.

3 b 4 r
jﬂ x’cosxr:bc+_|‘G x(cosx) dx =-x
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We then get:
reosxdx + fﬂx(—sinx)dx ==
0 0
Rearranging it further by pulling out the negatives, we find:
rcosxdx —Iﬂxsinxdx =-7
0 0

And you can see here that we have the original integral, but now we have
it in terms that we can actually solve! We solve for our original function:

I;xsinxdxzfscosxdx+ T
Remember that f cos x dx = sin x, and you can see that
f:xsinxdx=sinx\g 7
=sinzr -sin0+x
=0-0+nmr=x

There you have it.

EXERCISES

1. tan xis a function defined as sin x/ cos x. Obtain the derivative of tan x.

z. Calculate

e
0 cos” x

3. Obtain such x that makes f(x) = xe* minimum.

4. Calculate

_[: 2x1n xdx

A clue: Suppose f(x) = x* and g(x) =1n x, and use integration by parts.
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LET'S LEARN ABOUT
TAYLOR EXPANSIONS!




THE ASAGAKE TIMES
MAIN OFFICE

WOW! WHAT
AN OFFICE.

I WANNA
WORK HERE!

1 HAVE A MEETING.
WILL YOU WAIT FOR
ME IN THE LOBBY?

WHAT..WILL I BE
A NUISANCE?
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IMITATING WITH POLYNOMIALS

I HAVE HEARD SO
MUCH ABOUT YOU,
MR. SEKI.

NICE TO MEET
YOU.

RECEPTION

I WOULD LIKE YOU EXCUSE ME. OH, THANK...

TO LOOK AT THIS
DATA FIRST.
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NORIKO, WHAT ARE
YOU DOING? YOU
LOOK SUSPICIOUS.

THIS 1S THE SAME
DATA THAT YOU USED
IN YOUR ARTICLE,
ISNT IT?

AH, YES..WHAT'S
THE SOURCE OF
THIS DATA?

IT'S FROM BURNHAM
CHEMICAL. WE
RECEIVED THE

POCUMENT ITSELF
FROM A WHISTLE-
BLOWER. WE'VE
ALREADY CHECKED
ITS CREDIBILITY WITH
OTHER SOURCES.

1 CAN'T PUBLISH
MY NEW STORY
YET.

BUT I WILL LEND YOU
THE DATA THAT I HAVE
COLLECTED SO FAR.

THE SIMILARITIES ARE
ENCOURAGING.
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I WAS SO

N¥XI WELL, YOU
Ap(ri(oowu_?rjf HAVE A LOT OF
SORRY. CURIOSITY.

I NEVER
IMAGINED YOU
WOULD BE SO
BOLD!

MR, SEKI; I'M WORRIED.
BURNHAM CHEMICAL
1S AN IMPORTANT
SPONSOR OF THE
ASAGAKE TIMES.

IF THEIR ILLEGAL
ACT IS REVEALED, I'M
SURE THEY WILL STOP
SUPPORTING US.

AIBTgU%U%tg THIS 1S5 TAYLOR

EXPANSION,
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WE IMITATED ,
FUNCTIONS TO IF WE SET p = f'(a) AND

q =f(a) FOR FUNCTION f(x), FOR
@§$ !;‘fi‘%?,*;;‘,’fge EXAMPLE, WE COULD IMITATE

Fx) WITH A LINEAR FUNCTION AS
TIREL P Fi) ~ q + plx — @) VERY NEAR
- X= e

DIFFERENTIATION
WAS NOTHING BUT
MAKING AN IMITATING
LINEAR FUNCTION.

YES, AN EXAMPLE
IS THE CASE OF
JOHNNY FANTASTIC,
WHO BEGAN TO
GAIN WEIGHT AGAIN
BECAUSE OF HIS
BREAKLUF.

=

BUT, IN OTHER CASES,
WE IMITATED A FUNCTION
WITH A QUADRATIC OR A

CUBIC FUNCTION.

IF YOU PAY BACK THE MONEY
AFTER 1 YEAR, YOU PAY M(1 + x).

I HAVEN'T DONE
THIS RECENTLY.

50, HERE'S IF YOU PAY BACK THE MONEY
ANOTHER AFTER Z YEARS, YOU PAY
EXAMPLE. M (1 +x) (1 + x). IF IT'S AFTER

n YEARS, YOU PAY M (1 + x)".
NOW, IF WE WANT TO “EXFPAND”,
THAT FUNCTION...”

ASSUME YOU
BORROW M YEN
AT AN ANNUAL (1+2)"= 1 +nz + DocDgez ¢ nO=0(N=2055 4.
INTEREST RATE 2 £
OF x.

WE HAVE THIS.

n!

(1+x)" =1+ ,Cx+ ,C,x* + ,C;x° +...4 ,C . x"

* THIS IS THE FORMULA OF BINOMIAL EXPANSION, WHERE 2C = m AND C =n
a _n(n-1) - _n(n-1)(n-2) i 7n(n—1)...{n—(r—1)}
T B o - . R n-r T
2 6 r!
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TAKING ONLY THE
FIRST PART, WE CAN
IMITATE (1 + x)™ WITH

LINEAR FUNCTION

1+ nx.

(1+x)" =1+nx

BUT...

THIS IMITATION
IS IN FACT TOO
ROUGH TO BE OF
MUCH USE.

IF YOU USED THIS
APPROXIMATION,
YOU WOULD EASILY
BORROW TOO MUCH
MONEY AND SINK
INTO PEBTOR'S
PRISON.

e

OH, NO. HELP ME!

50, WE USE THE
QUADRATIC FUNCTION
TO IMITATE...

JU...JUST A MINUTE!

I THOUGHT TAYLOR
EXPANSION APFLIED TO
OUR NEWSPAPER!

JUST BEAR
WITH ME FOR
A MINUTE, WILL
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FORMULA 5-1: THE FORMULA OF QUADRATIC APPROXIMATION

-1
(1+x)" =1+nx+M.w:2

IF WE MODIFY THIS EXPRESSION
A LITTLE, WE GET A VERY
INTERESTING LAW.

For any pair of n and x that satisfy nx = 0.7, we get

— 1
n(nT)f =1v|—nx+—;—(n.x)2 Lo

(1+x)" =1+nx+ 5

1 S
=1+0.7 + 3 x0.7° =1.945 = 2 I Nearly zero, so we neglect it.

In short, if nx = 0.7, (1 + x)" is almost 2. This can be written as a law as
follows.

LAW OF DEBT HELL

When years to repay loan x interest rate = 0.7, the amount
you will repay is about twice as much as you borrowed.

ABOUT TWICE IF BORROWED FOR
35 YEARS AT Z PERCENT

~ ABOUT TWICE IF BORROWED FOR

7 YEARS AT 10 PERCENT

ABOUT TWICE IF BORROWED FOR -
- 2 YEARS AT 35 PERCENT

OH, NO!!
THIS 1S TERRIBLE!!

152 CHAPTER 5 LET'S LEARN ABOUT TAYLOR EXPANSIONS!



THE TERMS x" FOR WHICH n IS MORE THAN 1
ARE CALLED HIGH-PEGREE TERMS.

IMITATING A FUNCTION WITH A QUADRATIC (ZND-DEGREE)
FUNCTION IN THIS WAY OFTEN ALLOWS US TO FIND
INTERESTING THINGS. NOW, LET'S CONSIDER IMITATING A
FUNCTION WITH A HIGHER-DEGREE POLYNOMIAL. IN FACT, IT
IS KNOWN THAT WE CAN MAKE THE EXACT FUNCTION, INSTEAD
OF AN IMITATION, WITH AN /NFINITE-PEGREE FOLYNOMIAL.

For example, if we set f(x)= % we get

0 f(x)= T 1+x+x*+x®+x"+... (continues infinitely)

1

| Note this is = instead of ~. |

THIS IS A I THOUGHT
MISTAKE, ISN'T YOU WOULD
IT? IT CAN'T BE SAY THAT. LET'S

EQUAL TO! CALCULATE IT.

Suppose x = 0.1. We get

I j | 10
0.1)= ==
f( ) 1-0.1 9 9
1111...
9| 10
Right side =1+0.1+0.1> +0.1° + 0.1* +... a
=1+0.1+0.01+0.001 +0.0001 +... 18
=1.111111... _
10
9
If we actually calculate 10/9 by long division, we ——
. : 10
will obtain the same result. 9
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When a general function f(x) (provided it is differentiable infinitely many
times) can be expressed as

J(x)=a, +ax+ax* +a,x® +..+a,x" +...

the right side is called the Taylor expansion of f(x) (about x = 0).

d R

THIS MEANS THAT f(x) PERFECTLY COINCIDES WITH AN
INFINITE-DEGREE POLYNOMIAL IN A DEFINITE INTERVAL
INCLUPING x = 0. IT SHOULD BE NOTED, HOWEVER,
THAT THE RIGHT SIDE MAY BECOME MEANINGLESS
BECAUSE IT MAY NOT HAVE A SINGLE DEFINED VALUE
OUTSIDE THE INTERVAL.

FOR EXAMPLE, SUBSTITUTING x = 2
IN BOTH SIDES OF EXPRESSION @,

Left side = ﬁ il 5EE? THE TWO
o SIDES ARE NOT

EQUAL.
Right side=1+2+4 +8+16 +...

It turns out that expression @ is correct for all
x satisfying -1 < x < 1, which is the allowed interval
of a Taylor expansion. In technical terms, the inter-
val -1 < x < 1 is called the circle of convergence.
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HOW TO OBTAIN A TAYLOR EXPANSION
When we have
® [f(x)=a,+ax+a,x®+a,x* +..+aQ,X" +...
let’s find the coefficient a,,.
Substituting x = 0 in the above equation and noting f(0) = a,, we find that
the Oth-degree coefficient a, is f(0).
We then differentiate @.
© f'(x)=a, +2a,x+3a,x* +...+ na,x"" +...
Substituting x = 0 in ® and noting f'(0) = a,, we find that the 1st-degree
coefficient a, is f'(0).
We differentiate © to get
® f'(x)=2a, +6a,x+...+n(n-1)a,x"? +...
1 Substituting x = 0 in @, we find that the 2nd-degree coefficient a, is
5S7(0)-
2 Differentiating @, we get

f7(x)=6a, +...+n(n-1)(n-2)a,x""° +...

From this, we find that the 3rd-degree coefficient a, is % J7(0).

Repeating this differentiation operation n times, we get

f™(x)=n(n-1)..x2x1a, +...

where f {“][x) is the expression obtained after differentiating f(x) n times.
From this result, we find

nth-degree coefficient a, = i' s™(0)
n!

n!is read “n factorial” and means nx(n-1)x(n-2)x..x2x1.
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I MEAN THAT IF flx) IS A

ek 50, WHY 15 OUR | | FUNCTION THAT DEScriBes | ok THE
WAS A LITTLE COMPANY'S BURNHAM CHEMICAL'S | 1HE END?
suzotad B, PREDICAMENT ADVERTISING EXPENSES, :

THE TAYLOR THEIR SUPPORT OF
EXPANSION? OUR PAPER COULD BE
CONSIDERED THE THIRD
TERM OF A TAYLOR
EXPANSION. f(x) = THE JAPAN

@ TIMES + THE KYOPO NEWS +

THE ASAGAKE TIMES

SINCE IT'S
INSIGNIFICANT FOR
THEM ANYWAY,
THEY'LL LIKELY

THAT'S RIGHT.
b

ACTUALLY FOR

BURNHAM CHEMICAL,

THE AMOUNT OF MONEY
THEY SPEND FOR

SUPPORT US LIKE
THEY DIP BEFORE
EVEN IF THEY
CHANGE THEIR
EXECUTIVES.

US 1S ONLY A VERY
SMALL AMOUNT—THE
3RD-DEGREE TERM,

OBTAINED AFTER
DIFFERENTIATING
THREE TIMES.

MR. SEK|, WHERE
DIP YOU GO ouT
FOR DRINKS WHEN
YOU WORKED AT
THE MAIN OFFICE?
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YOU KNOW, WE'RE DONE
DRINKING WITH WITH OUR WORK.
YOUR COLLEAGUES ;’8' 33?'?:‘2; \gi
AFTER WORK, A

TALKING ABOUT
SUCCESS STORIES...

OKAY,
LETS @O.
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NICE A
ATMOSPHERE,

I ISN'T IT?

AH, YES. ARE ALL

THESE PEOPLE
JOURNALISTS?

LOOK, THAT'S ISHIZUKA,
THE PHOTOGRAPHER
WHO IS THE YOUNGEST
WINNER OF THE JAPAN
PHOTOGRAPHIC PRIZE.

A\ THERE ARE FROM THE

AND THAT'S MR. NAKATA,
A HEAVYWEIGHT IN THE
DESIGNERS' CIRCLE.

THE GUYS OVER
SANDPA CITY FOST.

HEY, CALCULUS,
LONG TIME NO
SEE. JOIN US.

WHAT A
NICKNAME! BUT,
IT CERTAINLY
FITS.

LET'S SEE. 1
HOPE 1 CAN
LISTEN TO THEIR
PROFESSIONAL
DISCUSSION.

BECAUSE OF
HIGH BLOOD

MR,
CALcULUS!I?
MAYBE 1
BITTERMAN % SHOULD THINK
GOT DIABETES MR, STACK ABOUT GETTING
RECENTLY. :%ggfgg A MEDICAL

CHECKUP
SOON.

IT'S JUST MIDDLE-
AGED MEN'S TALK!
THIS 15 USELESS.
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FORMULA 5-2: THE FORMULA OF TAYLOR EXPANSION

If f(x) has a Taylor expansion about x = 0, it is given by

f(x):f(0)+%f’(0)x+%f”(0)x2 +%f”(0)x3 +...+%j[") (0)x" +...

For the above,

f(0) Oth-degree constant term  a, = f(0)
J(0)x 1st-degree term a, = f'(0)
1 ” 1 ¥
E!f (0)x* 2nd-degree term a, = 5f (0)
1 ” 1 ”
af (0)x* 3rd-degree term a = 5" (0)

For the moment, we forget about the conditions for having Taylor expansion
and the circle of convergence.
Using this formula, we check @ on page 153.

: X)= & X
(1-x) (1-x)"" (1-x)*
Fl0)=1, f(0)=1, £°70) =2, F7{0) = 6, s ! (0] =rt

)=t (%)=

Thus, we have

F(x)= £(0)+ L5 /(0)x+ - 5(0)x" +

ni

1 1
=1+x+—x2x% 4+ —x6x*+...+—n!x" +...
2! 3! ! [ THEY

=l+x+x2+x®+..x" +...

THE FORMULA ABOVE IS FOR AN INFINITE-DEGREE POLYNOMIAL THAT COINCIPES WITH
i1 THE ORIGINAL NEAR x = 0. THE FORMULA FOR A POLYNOMIAL THAT COINCIDES NEAR x = a
QH 1S GENERALLY GIVEN AS FOLLOWS. TRY THE EXERCISE ON PAGE 178 TO CHECK THIS!

S(x)=S(a)+ 3 5 (@)(x-a)+ o f (@) (x-a)
1

Jr%f”’(a_)(x*a)3 b — Ef(") (a)(x-a)" +...

[ TAYLOR EXPANSION IS A SUPERIOR IMITATING FUNCTION.
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[11 TAYLOR EXPANSION OF A SQUARE ROOT
-
We set f(x)=+1+x=(1+x)2.

Thus, from f’(x) = %(1+x)'%

3

S (x) =g xg(Lex)s

[3] TAYLOR EXPANSION OF LOGARITHMIC
FUNCTION In (1 + x)

We set f(x)=In(x+1)

g (x)= —6(1+x)_4 yees
S(0)=0,f(0)=1,f(0)=-1, % (0)=21,
§* (o) =-81,...

Thus, we have

In(l+x)=
0+x—1x2 +l><2!x3 —13!x4+...
2 31 4
In(1+x)=
1 "
x-tapilys Ly, +( 1)"’1x“+
3 n

TAYLOR EXPANSION OF VARIOUS FUNCTIONS

[Z] TAYLOR EXPANSION OF EXPONENTIAL
FUNCTION e*

If we set f(x)=e",
J'(x)=¢€*f"(x)=€", f"(x)=¢€",...

So, from

1
e :1+lx+lx2 F—ax?® T,
1! 2! 3! 41
1 n
+—Xx" +...

n!

Substituting x = 1, we get
1 1 1 1 1
‘f.

e=1l+—+—+—F—F..+—+..
1! 2! 3! 4! n!

IN CHAPTER 4, WE LEARNED THAT e IS
ABOUT 2.7. HERE, WE HAVE OBTAINED THE 2,
EXPRESSION TO CALCULATE IT EXACTLY. (i

[4] TAYLOR EXPANSION OF TRIGONOMETRIC
FUNCTIONS

We set f(x) = cos x.
f'(x) = *Sinx'_f"(x) - _Cosng[sj (x)
=sinx, f¥ (x)=cosx,...
From
F(0)=1,5(0)=0,57(0)=-1,
FH 0=, 0] =1
Thus,

rzosx=1+0x—i><1><:4:2 +—!—x0xx3 +l><1xx“ +ue
2! 3! 41

cosx:lflxﬁ +lx“ +."+(_1)an“ F e
217 4! (2n)!

Similarly,

1 2n-1

. x
! (2n-1)!

sinx=x— L x% + 1 x° +ot (1)
3! 5
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WHAT DOES TAYLOR EXPANSION TELL US?

TAYLOR EXPANSION REPLACES COMPLICATED FUNCTIONS
WITH POLYNOMIALS. CAN YOU DRAW THE GRAPH OF,
FOR EXAMPLE, In (1 + x)?

AFTER ALL, IT IS NECESSARY TO APPROXIMATE OR IMITATE
FUNCTIONS TO UNCOVER THEIR COMPLICATED WORLD, ISN'T IT?

LET'S USE In(L+x) = x~2x* + - x* ~ 2x* ..., AN EXAMPLE GIVEN
ABOVE, TO SEE WHAT WE CAN GAIN FROM A TAYLOR EXPANSION.

1 Linear approx. TS Cubic approx.

ln(1+x)=0+xﬁlx2+lxa—lx“+...

o 2 3 4
Oth degree
approx. 2 Quadratic approx.

% FIRST, 0th-DEGREE APPROXIMATION. 1n (1 + x) ~ 0 NEAR

x = 0. WHAT DOES THIS MEAN?

AH, WELL...IT MEANS THAT THE VALUE OF f(x) IS 0 AT x = 0 AND
IT PAS5ES THROUGH POINT (0, 0).

(

THAT'S RIGHT. NEXT IS LINEAR
APPROXIMATION. YOU SEE THAT y = f(x)
ROUGHLY RESEMBLES y = x NEAR
x =07? 50, THIS MEANS THAT THE
FUNCTION |5 INCREASING AT x = 0.
(NOTE: THE EQUATION OF A TANGENT
LINE = LINEAR APPROXIMATION.)
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WE'LL NOW TAKE ONE
MORE STEP TO QUADRATIC
APPROXIMATION. LET'S
CONSIDER THE GRAPH OF -1

1n(1+x)=x—%x2

AROUND x = 0. NORIKO,
WHAT DOES THIS MEAN?

T st i s dnsessnned

.

g
THIS MEANS THAT y = f(x) ROUGHLY RESEMBLES y = x — - x°
NEAR x = 0 AND 175 GRAPH IS CONCAVE DOWN
AT x = 0. (QUADRATIC APPROXIMATION ALLOWS US TO
FIND HOW IT IS CURVED AT x = a.)
.

LET'S USE CUBIC
APPROXIMATION AS THE
LAST PUSH!! NEAR x = 0,

1n(1+x)=x—£x2+lx3
2 3

(CUBIC APPROXIMATION
FURTHER CORRECTS THE
ERROR IN QUADRATIC
APPROXIMATION.D

NOW, MR. SEKI,
ON TO THE NEXT BAR!
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WE SHOULD HAVE
JUST COME HERE
IN THE FIRST
PLACE.

THIS 1S BETTER! WE
CAN TALK MORE
QUIETLY AT THIS

HOTEL BAR.

YOU COULD HAVE WELL, THEY ALL SEEMED 50 WHAT'S YOUR
TALKED MORE BRILLIANT. I FELT..I WOULD DEAL, MR. SEKI?
WITH THE GUYS SAY, SOMEWHAT INFERIOR.

AT THAT PUB.

o),

Vitid 140 1i Y

ALL OF THOSE
PEOPLE ARE BUT, I COULD
FAMOUS— IMMEDIATELY
THEY'VE ALL WON TELL THAT THEY
JOURNALISTIC RESPECTED YOLU.

PRIZES.
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HOW CAN YOU BE
HAPPY TUCKED AWAY IN
OUR BRANCH OFFICE?

W

YOUR WRITING
HAS BECOME SO
INCONSEQUENTIAL!

I WONDPER WHAT
THE PROBABILITY
IS OF ME EVER
BECOMING A TOP-
NOTCH JOURNALIST
LIKE THOSE
PEOPLE IN THE
PUB.

L a

B R
PLRT

TP

2

LA
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NO MORE
ALCOHOL
FOR HER.

IF ALL YOU'RE WORRIEPD
ABOUT |15 THE PROBABILITY
OF BECOMING GREAT,
YOU WON'T BECOME
ANYTHING. YOU WON'T GET
ANYWHERE BY WAITING.




ALTHOUGH THEY WERE
CHATTING ABOUT SILLY
THINGS,

THEY ARE ALL MAKING
DESPERATE EFFORTS IN
THEIR WORK.

THEY JUST KEEP DOING
WHAT THEY WANT TO DO.
NONE OF THEM WOULD EVER
SURRENDER THEMSELVES TO
THEIR FATE. AND I WOULDNT,
EITHER.

DROOPED

OH, SPEAKING OF
PROBABILITY!

WHATZ NO WAY!
WE'RE GOING TO
\ STUDY NOW?

OF COURSE! I'M YOUR
TEACHER, AND YOU ARE
A PRECIOUS ASSET.
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WHEN WE ANALYZE
UNCERTAIN THINGS USING
PROBABILITY, WE MOST
FREQUENTLY USE THE
NORMAL DISTRIBUTION.

THIS DISTRIBUTION

IS DESCRIBED BY A

PROBABILITY DENSITY
FUNCTION THAT 15
PROPORTIONAL TO

Lo

flx)=e?

AFTER SCALING. THE GRAPH
OF flx) 15 SYMMETRICAL
ABOUT THE Y-AXIS, AS
SHOWN IN THIS FIGURE, AND
IT LOOKS LIKE A BELL.

SORRY. HE'S GOING
TO BE WRITING A
LOT. CAN YOU GIVE
Us SOME MORE
COASTERS?

MANY PHENOMENA
HAVE THIS FORM OF
DISTRIBUTION. FOR
EXAMPLE, THE HEIGHTS
OF HUMANS OR ANIMALS
TYPICALLY HAVE THIS

DISTRIBUTION.

MEASUREMENT
ERRORS, TOO.

IN FINANCIAL CIRCLES,
THE EARNING RATES OF
STOCKS ARE BELIEVED
TO HAVE A NORMAL
DISTRIBUTION.

SOME STUDENT GRADING
HAS BEEN BASED ON A
NORMAL DISTRIBUTION

BECAUSE EXAM RESULTS

ARE OFTEN EXPECTED TO

FALL IN SUCH A WAY.
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50 YOU CAN
UNDERSTAND, 1
WILL SHOW YOU,
USING A TAYLOR
EXPANSION,
THAT FLIPPING
COINS FOLLOWS
A NORMAL
DISTRIBUTION.
WHAT'S THE
PROBABILITY OF
A COIN SHOWING
HEADS WHEN
FLIPPED?

DON'T TAKE ME
FOR A FOOL.
ITS Ve

YES. WE DON'T KNOW
WHICH SIDE WILL
APFEAR. BUT WE DO
KNOW THE CHANCES
OF A PARTICULAR SIDE
IS 1IN 2.

THE GRAPH ON TOP SHOWS
THE PROBABILITY OF GETTING

HEADS WHEN 20 COINS ARE
FLIPPED AT ONCE, PLOTTED
WITH THE NUMBER OF HEADS

ON THE HORIZONTAL AXIS
AND THE PROBABILITY ON THE
VERTICAL AXIS.

The number of heads when
20 coins are flipped at once
(binomial distribution)

1 3 5 7 9 11131517 19

OH, IT LOOKS LIKE
THE LOWER GRAFPH.

0.5

0.4

0.3

0.2

0.1

0

-4 -3 -2 -1 0 1

Standard normal distribution

YES, IT OVERLAPS
WITH THE GRAPH
OF A NORMAL
DISTRIBUTION
ALMOST PERFECTLY.
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IN FACT, IF WE DEFINE g,(x) \\\ \ l
AS “THE PROBABILITY OF \

GETTING x HEADS WHEN
n COINS ARE FLIPPED AT
ONCE™ AND ALLOW n TO
APPROACH +x FOR THE l
GRAPH OF g,.(x)... q - __...12
(0 15 READ AS 2
INFINITY)... /

HE WROTE THE SAME ggw‘gﬁ_ ;?FNTO
EQUATION BEFORE! HE GLE THAT IT 16
DOESN'T HAVE TO USE

TWO COASTERS! PROPORTIONAL
TO THE NORMAL
FUNCTION

— : : g 7 ABOVE.

& -
g e
7

* The distribution of such probabilities as that of getting x heads when n coins
are flipped is generally called the binomial distribution.

For example, let's find the probability of getting 3 heads when 5 coins are
flipped. The probability of getting HHTHT (H: heads, T: tails) is '

11111 (1Y
—X=X =X X ==
570 2 23 \8

Since there are ;C, ways of getting 3 heads and 2 tails, itis ;C, % . The

n

5

s 1 G o ; :
general expression is  C, e We will show that if n is very large, the binomial

distribution is the normal distribution.
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USING THE
BINOMIAL
DISTRIBUTION,

g,.(x) CAN BE WRITTEN
IN THIS WAY.

FIRST...
SINCE THE GRAPH OF DIVIPING g,,(x)
Six) 19 SYMMETRICAL BY THIS...
ABOUT x=0

AND g,.(x) ABOUT x = %

WE GET h,,
THE SCALED
FUNCTION

=

COASTE

WE CONSIDER g, (™)
INSTEAD 2
OF g,(x).
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S0 MANY..WASTED
COASTERS...

Jn
5 |5 THE STANDARD
PEVIATION. IF YOU
DON'T KNOW STATISTICS,
SIMPLY REGARD IT AS A
MAGIC WORD!

WELL, WE NOW :
CONVERT THE UNIT INTO g 4
SINCE x 15 AWAY "
FROM THE CENTER 2

* STANDARD DEVIATION IS AN INDEX WE USE
TO DESCRIBE THE SCATTERING OF DATA.
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IN OTHER

IN THIS WAY, WE
WORDS, CHANGE THE VARIABLE.
n  Jn _ THE NEW ONE, z 15 THE
x: 5+t X ] = ¥ = NUMBER OF STANDARD
DEVIATIONS AWAY

FROM THE CENTER.

AND SUBSTITUTE x IN h,,.

n

WE TAKE A In OF
EACH SIDE.

NOW WE NEED

TO CALCULATE
THIS, BUT SHALL
WE MOVE ON TO
THE NEXT BAR?

* WE UsE

Inab=Ilna+Inb

lngzlnd—lnc
c
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THANK YOU. I THINK
WE'RE DONE.

READY TO GO? I GUESS I SHOULD

BE HAPPY I STILL
HAVE SOME...

POSITIVE THINKING

Approximating In (m!) Area=Inm

3 y=Inx
Inm!=Inl+In2+In3+...+1lnm Y

P
.
[T
e :

In m

If we pack rectangles in the

graph of In x, as shown here, we get K = lad

In2+...+lnm = Lm In xdx

(xlnxfx)lzlnx+x><£—1=lnx
x

m-1m
Thus,

Ilmlnxdx =(mlnm-m)-(1ln1-1)
=mlnm-m+1
Since we will use this where m is very large, m In m is the important term.

-m + 1 is much smaller, so we'll ignore it. Therefore, we can consider roughly
thatln m! = mIn m.
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WELL, LET'S JUST FINISH
THIS HERE! IF WE USE
Inm!~=mlnm
(SEE THE PREVIOUS
PAGE)...

QUICK, GIVE THESE

TO Us!! AHHHH!

o
s
oo
=
8
|
—}
NS
+
B
i
=
—_
+
ik
[p 4]
e
+
—_
NS
{
N3]
)
—
.y
3
_
1
s15)
i,
N

WE USED, E.C., In{gﬂ-%z]:ln{%(lwt—nzﬂ :lng+ln[1+£z]

NOW, LET'S USE A
TAYLOR EXPANSION,
WHICH YOU'VE BEEN
WAITING FOR.

I HAVEN'T BEEN
WAITING FOR IT.

ot
GVigaF
"@@\’9

3 \IL

JUST TAKE
THEM
-
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WHEN t IS
CLOSE TO
ZERO,

Vn_ 1
NOW, n Jn IS VERY
CLOSE TO ZERO IF n 15
LARGE ENOUGH.

! gn(1+t)xt-% 1

Jn
“n 2 ALSO 15 THEREFORE
AS CLOSE AS WE WANT

(QUADRATIC o || 70 ZEr0 FOR FIXED =.
APPROXIMATION)" &

* SEE PAGE 161,

THEREFORE,

THESE BACK.
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SINCE WE NOW KNOW

Inh, (x)= —%zz,

2

1
WE GET h, (x)=-e 2 .
THAT'S IT!

IF YOU ARE AFRAID THAT THE HIGHER-DEGREE TERMS OF
x® AND MORE THAT APPEAR IN THE TAYLOR EXPANSION
OF In MIGHT AFFECT THE SHAPE OF h,(x) (n: LARGE
ENOUGH), ACTUALLY CALCULATE h,(x), USING

1n(1+t)=t_lt2+lt3
2 3

YOU WILL FIND THAT THE TERM OF z* HAS n IN THE
DENOMINATOR OF ITS COEFFICIENT AND CONVERGES TO
ZERO, OR DISAPPEARS, WHEN n — o,

AS FOR THE NORMAL
DISTRIBUTIONS, CAN WE
APPLY THEM TO THINGS

OTHER THAN COIN
FLIPPING?
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ARE YOU THINKING
ABOUT APPLYING OUR
STUDIES TO LOVE AGAIN?
PROBABILITY CAN ONLY
APPLY WHEN PHENOMENA
ARE UNINTENTIONAL AND /.

PURELY RANDPOM, HOW ABOUT IN

THE CASE OF
UNINTENTIONAL AND
PURE LOVE?

ITs ouT
OF THE
QUESTION!

LISTEN! IF WE DARE TO
ASSUME VERY ROUGHLY THAT
THE WAY TWO PEOPLE FALL IN
LOVE 1S SOMETHING LIKE THE
COMBINATION OF THE RESULTS

OF FLIPPING AN INFINITE

NUMBER OF COINS...

WELL, SINCE WE
HAVE FOUND THAT
THE DISTRIBUTION

OF THE RESULTS OF

COIN FLIPPING 15

APPROXIMATELY A
NORMAL DISTRIBUTION,
IT WOULD NOT BE
SURPRISING IF A
NORMAL DISTRIBUTION
COULD BE CALCULATED

FOR LOVE.

REALLY?
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BUT!

FROBABILITY 1S LIMITED
ONLY TO UNCERTAIN
PHENOMENA THAT ALLOW
NO INTENTIONALITY.
I'M SORRY FOR BEING
PEDANTIC.

BUT, MR. $EKI, SUPPOSE
THERE IS A VERY
INNOCENT GIRL...

WHY PO YOU NEVER
UNDERSTAND ME?
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EXERCISES

1. Obtain the Taylor expansion of f(x) = e ™ at x = 0.

1
cosx

atx=0.

2. Obtain the quadratic approximation of f(x)=

3. Derive for yourself the formula for the Taylor expansion of f(x) centered
at x = 1, which is given on page 159. In other words, work out what c,
must be in the equation:

f(x)=c,+¢,(x-a)+c,(x-a)’ +..+¢c, (x-a)*
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LET'S LEARN ABOUT
PARTIAL DIFFERENTIATION!




WHAT ARE MULTIVARIABLE FUNCTIONS?

NP

' | WHAT?Z77

MR. SEKI 1S GOING
BACK TO THE MAIN

OFFICE? —
L]

= =
(" ]
| —— *-\____\

A

\ \‘\

\

\

WHAT HAPFENED?
WERE YOU
PROMOTED?

I DONT
KNOW...

w’
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BUT YOU TOLD ME,
“AN EFFECT OCCURS
BECAUSE IT HAS A
CAUSE.

YOU'VE BEEN
TEACHING ME
EVERY DAY! I EVEN
HAD NIGHTMARES
ABOUT IT!

CAUSE AND EFFECT...I
REMEMBER THAT. WE
TALKED ABOUT THAT
IN ONE OF OUR FIRST
LESSONS.

IT'S TRUE THAT WE
HAVE BEEN EXPLORING
SIMPLE FUNCTIONS
THAT HAVE A CAUSE
AND AN EFFECT.

N\

SUCH A g
RELATIONSHIP CAN
BE EXPRESSED

X~ - J
CAUSE EFFECT
IN A DIAGRAM
LIKE THIS.
I ——
I GUESS MY TRANSFER
BUT THIS TRANSFER TO THE MAIN OFFICE HAS
HAS REMINDED ME THAT

THE WORLD IS NOT 50
SIMPLE, AFTER ALL.

BEEN BROUGHT ABOUT AS
A COMBINED RESULT OF
SEVERAL CAUSES.
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IT CAN BE
EXPRESSED - _I

IN THE CASE OF
MR. SEKI, x 15
EXCELLENT WRITING,
y 15 HARD-HITTING
REPORTING, AND
z 15 TRANSFER TO
THE MAIN OFFICE. 15
THAT RIGHT? -~

IN THE CASE OF NORIKO, x,
15 LAST MONTH'S BLUNDER,
x, 16 THIS MONTH'S BLUNDER,
i AND x, AND x, ARE POOR
L GROOMING AND HYGIENE,
WELL, I DON'T WHICH MAKES y HER
KNOW THE DEMOTION TO WRITING /
| REASONS FOR OBITUARIES.
A\ MY TRANSFER

SHUT UP,
YOU PUMB

ALL RIGHT, THAT'S
ENOUGH. NORIKO,
WE DON'T HAVE MUCH

TIME LEFT.

LET'S LEARN THE
BASICS QUICKLY.
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THE FUNCTION OF
THE LEFT DIAGRAM
IS WRITTEN AS
z = g(x, y), AND
THAT OF THE RIGHT
PIAGRAM 15 WRITTEN
AS y = hix;, x,, x5, X,).

I WILL GIVE YOU
SOME EXAMPLES OF
FUNCTIONS THAT HAVE

TWO CAUSES, THAT
1S, TWO-VARIABLE
FUNCTIONS.

-----------
.............
...................

................
..............

EXAMPLE 1
Assume that an object is at height h(v, t) in meters after ¢t seconds when
it is thrown vertically upward from the ground with velocity v. Then, h(v, t)
is given by

h(v,t)=vt - 4.9t

EXAMPLE 2
The concentration f(x, y) of sugar syrup obtained by dissolving y grams of
sugar in x grams of water is given by

f(x,y)zxgyxloo

EXAMPLE 3
When the amount of equipment and machinery (called capital) in a nation
is represented with K and the amount of labor by L, we assume that the
total production of commodities (GDP: Gross Domestic Product) is given
by Y(L, K).

CONSTANTS) IS USED AS AN APPROXIMATE FUNCTION
OF Y(L, K). 5EE PAGE 203.

IN ECONOMICS, Y (L, K) = BLK'™" (CALLED THE
COBB-DOUGLAS FUNCTION) (WHERE o AND 3 ARE
/

EXAMPLE 4
In physics, when the pressure of an ideal gas is given by P and its volume
by V, its temperature T is known to be a function of P and V as T(P, V). And
it is given by

T(P,V)=yPV
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---------
........

WHAT PO YOU THINK
WE DO TO EXAMINE
THE PROPERTIES OF
THESE COMPLICATED

TWO-VARIABLE
FUNCTIONS?

.......................................

DO WE USE
IMITATING LINEAR
FUNCTIONS?

- WELL, YES. BUT SINCE WE NOW
il | HAVE TWO-VARIABLE FUNCTIONS,
=1 | WE HAVE TO USE TWO-VARIABLE

LINEAR FUNCTIONS.

TWO-VARIABLE LINEAR
FUNCTIONS ARE GIVEN IN A
FORM LIKE z = f(x, y) = ax +
by + ¢ (WHERE a, b, AND ¢
ARE CONSTANTS.)

= FOR EXAMPLE,
z=3x+2y+10R
z=-x+9Y -2,
SEE?

NOW, LET'S SEE WHAT
THEIR GRAPHS LOOK LIKE.
SINCE THEY HAVE TWO
INPUTS (x AND y) AND AN
OUTPUT (2), IT IS NATURAL
TO USE 3-DIMENSIONAL
COORPINATES.

WELL, JUST THINK
OF AN IMAGE IN
WHICH THE X-Y

PLANE IS THE
FLOOR AND THE
Z-AXIS IS A PILLAR.
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T et} INE YOU SEE, THE POINT P P=(2,3,5)
AT THE COORDINATES ¥ rr\ o
5

WRONG?

OH! NO, NOTHING.
LET'S CONTINUE.

(2, 3, 5) 15 THE POINT
AT THE TOP OF A
STICK STANDING AT
(2., 3) ON THE FLOOR
AND HAVING A LENGTH

OF 5.

NOW, WHAT DO YoU
THINK THE GRAPH OF
THE TWO-VARIABLE
LINEAR FUNCTION
z=flx,y=ax+hy +c
LOOKS LIKE?

LET's PRAW
THE GRAFH OF
z=flx,y)=3x+2y +1
AS AN EXAMPLE.

FIRST, WE PLACE A STICK HAVING THE
LENGTH f(1,2)=3x1+2x2+1=8
AT POINT (1, 2) ON THE FLOOR.
IN THE SAME WAY, THE HEIGHT
OF THE GRAPH HAS A VALUE OF
fl4,3)=3x4+2x3+1=19
AT POINT (4, 3).

* ALTHOUGH WE SHOULD ACTUALLY WRITE IT AS (4, 3, 0),
WE'LL USE (4, 3) FOR SIMPLICITY.
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IN THE SAME WAY, WE PUT
UP 16 STICKS AT 16 POINTS
(x, y) SATISFYING 1 <x< 4

LOOKING AT THIS
FIGURE, YOU CAN

AND 1 <y <4, WHICH
ARE SHOWN IN THIS
FIGURE.

15

o0

N

10k

e

VAGUELY SEE THAT
THE GRAPH FORMS A
PLANE, CAN'T YOU?

3, YES, I SEE IT!

NOW, LET'S LOOK AT
THE PILLARS ON THE
NEAREST SIDE.

THEIR HEIGHTS ARE,
BEGINNING FROM THE
LEFT, f(1, 1) = 6, f(2, 1) = 9,
S8, 1) =12, ANDf[4, 1) = 15.

THESE POINTS FORM
A LINE WHOSE
SLOPE |15 3,
WHICH |5 INTUITIVE
BECAUSE IFy IS5 A
CONSTANT (y =1) IN
z=flx,y)=3x+2y + 1,
WEGETz=3x+2x1

+1=3x+3.

NEXT, LET'S LOOK AT THE
HEIGHTS OF THE STICKS RIGHT
BEHIND THE FIRST ONES.
THEIR HEIGHTS ARE f(1, 2) = 8,
f(2,2) = 11, f(3, 2) = 14, AND
(4, 2) = 17, EACH OF WHICH
IS HIGHER THAN THE STICK IN
FRONT OF IT BY 2.

FURTHERMORE,

THE HEIGHTS OF THE STICKS BEHIND

THESE ONES ARE f(1, 3) = 10, (2, 3) =

13, f(3, 3) = 16, AND f(4,3) = 19, EACH OF

WHICH 15 AGAIN HIGHER THAN THE ONE IN
FRONT OF IT BY 2.
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WE FIND THAT THE
TOPS OF THE STICKS
AS A WHOLE FORM A
PLANE. WE CAN NOW

GENERALIZE THIS.

SINCE THE STICKS
BECOME HIGHER BY
Z THE FURTHER AWAY
FROM US THEY ARE,

LET'S CONSIDER A PLANE THAT
REPRESENTS THE FUNCTION
fix, y). WE CAN START AT
POINT O, WHICH WE KNOW 15
(0, 0, 0), OR THE ORIGIN. NOW
CONSIDER LINE SEGMENT
OA—A FUNCTION TO DESCRIBE
THIS LINE CAN BE FOUND IF WE
SET y = 0. THIS MEANS THAT
LINE |15 REPRESENTED BY THE
FUNCTION z = ax, AND HAS
SLOPE a. SIMILARLY, WE FIND
THAT LINE SEGMENT OB OF
THIS PLANE 15 REPRESENTED
BY THE FUNCTION z = by (AS WE
HAVE SET x EQUAL TO ZERO),
AND HAS A SLOPE OF b. POINT
C ON THE PLANE OACB HAS A
HEIGHT EQUAL TO ax + by. IF

WE WANTED TO PHYSICALLY
REPRESENT THIS PLANE, WE
COULD TIE A SHEET TO
LINE SEGMENTS OA AND
OB, AND TIGHTEN THE
SHEET.

FIRST, LET'S DRAW
THE GRAPH OF
z = f(x, y) = ax + by
(LET CONSTANT c = 0).

NOW, IF WE HAVE TO
CONSIDER A CONSTANT (AN
EQUATION THAT TAKES THE
FORM z = ax + by + ¢) WE
SIMPLY ADJUST THE GRAPH
BY RAISING THE PLANE BY c.
POINT O ON OUR PLANE |5

NOW AT (0, 0, c), POINT A HAS

A HEIGHT OF (ax + ), ‘

AND SO ON.

THE BASICS OF VARIABLE LINEAR FUNCTIONS 187



NORIKO!

LET'S STOP HERE FOR
TODAY. YOU DON'T SEEM
TO BE VERY FOCUSED ON
OUR LESSON.

I HAVE A LOT OF THINGS
TO PO BEFORE I LEAVE,
INCLUDING PACKING UP ALL
MY STUFF. 50, WILL YOU
MEET WITH ME THIS SUNDAY?

UH, SURE...

b+ e -
.......

......
........

I KNOW YOU WANT TO HAVE
SUNDAYS OFF, BUT LET'S HAVE
ONE LAST LESSON. WHEN
WE'RE DONE, T'LL TREAT YOU
TO DINNER.
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THIS SCHOOL WAS
CLOSED A FEW
YEARS AGO.

NO. I JUST LIKE IT
HERE BECAUSE IT'S
WHERE I LEARNED
MATH.

REALLY? ARE YOU
GOING TO WRITE A
STORY ABOUT IT?

ACTUALLY, I WAS
BORN IN THIS TOWN.

THIS WAS A SMALL SCHOOL.
BUT THERE WAS A TEACHER
HERE WHO GAVE ME THE BEST

LESSONS IN THE WORLD.

AT TANAKA 5CHOOL 1849



1F WE DRAW A GRAPH OF \ TEACHER, THERE
THE TWO-VARIABLE FUNCTION NOW, IF WE MAKE _ WERE STILL

THE PLANE OACB
z=flx,y)=3x+2y+1 : SOME POTATOES
IN THE 3-DIMENSIONAL WITH THIS STRAW 1A IN THERE. WHAT
COORDINATE SYSTEM, WHAT F .  SHOULD WE DO?

POES IT LOOK LIKE, KAKERU?

MR. KINJIRO BUNDA.
HE WAS A VERY
GOOD TEACHER.

NOW, NORIKO,
LET'S BEGIN OUR
LAST LESSON.
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PARTIAL DIFFERENTIATION

OH, THERE'S THE
FIRST PERIOD BELL!
LET'S EXPLORE THE
DIFFERENTIATION

OF TWO-VARIABLE
FUNCTIONS.

CLASS SCHEDULE

PARTIAL
1 DIFFERENTIATION

SINCE WE NOW KNOW THAT
A LINEAR TWO-VARIABLE
FUNCTION APPEARS TO BE A
PLANE, WE CAN IMITATE MORE
COMPLICATED TWO-VARIABLE
FUNCTIONS.

OUR ORIGINAL
FUNCTION LOOKS
LIKE A FLAT-TOP

TENT, DOESN'T IT? el

/" IT LOOKS MORE

WELL, THAT'S NOT AN IMPORTANT
DISAGREEMENT. NOW, LET'S MAKE
AN IMITATING TWO-VARIABLE
LINEAR FUNCTION OF flx, y) NEAR
A POINT (a, b) (x = a AND y = b).
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We make a two-variable linear function that has the same height as f(a, b) at
the point (a, b). The formula is L(x, y) = p(x — a) + q(y - b) +_f(a, b). Substitut-
ing a for x and b for y, we get L(a, b) = f(a, b).

z=f(x.y)
z=L(x,y)

(Imitating
two-variable
linear function) J/,

While the graph of z = f(x, y) and that of z = L(x, y) pass through the
same point above the point A = (a, b), they differ in height at the point
P=(a+ ¢, b+ 6). The error in this caseis fla+ ¢, b+ 8) - Lla+¢, b+ 8) =
Sfla + ¢, b + 6) - fla, b) - (pe + gd), and the relative error expresses the ratio

of the error to the distance AP.

difference between fand L
distance AP

Relative error =

_fla+e,b+8)- f(a,b)—(pe+qd)

o —:
Ve +8*

We consider L(x, y) as the difference between it and f becomes infinitely
close to zero (when P is infinitely close to A) as the imitating linear func-
tion. For that case, we obtain p and q. p is the slope of DE and q that of DF
in the figure. Since ¢ and ¢ are arbitrary, we first let 5 = 0 and analyze ©.

® becomes

Sf(a+&b+0)- f(a,b)—(pe+gx0)

Relative error =
ve? +0?

:f(a+s,b)—f(a,b)_p
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Thus, the statement “the relative error — 0 when ¢ — 0” means the
following:

o 1) (@teD)-f(ab)

£—0 £

This is the slope of DE.
Here, we should realize that the left side of this expression is the same

as single-variable differentiation. In other words, if we substitute b for y and
keep it constant, we obtain f(x, b), which is a function of x only. The left side
of @ is then the calculation of finding the derivative of this function at x = a.
Although we are very much tempted to write the left side as f'(a, b) since
it is a derivative, it would then be impossible to tell with respect to which, x

or y, we differentiated it.
So, we write “the derivative of f obtained at x = a while y is fixed at b” as

fla, b).
This f, is called “the partial derivative of f in the direction of x”. This is

the notation corresponding to the “prime” in single-variable differentiation.
df af
The notation g, (a, b), that corresponds to 5y, is also used. In short, we
have the following:

“The derivative of f in the direction of x obtained at x = a while y is
fixed at b”

J.(a,b)= g{z(a.b) also written as Ugixl_a.y
= Slope of DE
J 15 READ AS
‘PARTIAL DERIVATIVE.”

In exactly the same way, we can obtain the
following.

“The derivative of f in the direction of y
obtained at y = b while x is fixed at a”

sy(ab)= 5 (ap)

= Slope of DF
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We have now found the following.
If z = f(x, y) has an imitating linear function near (x, y) = (a, b), it is

given by
® z=f (ab)(x-a)+f,(ab)(y-b)+ f(ab)

or' z:g—‘i(a,b)(xéa)+§—‘);(a,b)(y—b)+f(a,b)

Consider a point (¢, 8) on a circle with radius
1 centered at the origin of the x — y plane (the
floor). We have o’ + ,62 =1 (or a = cos 0and
p = sin ). We now calculate the derivative in the
direction from (0, 0) to (a, ). A displacement
of distance t in this direction is expressed as
(a,b) > (a+ ot, b+ pt). If we set e = at and § = fit
in @, we get

S(a+at,b+pt)- f(a,b)-(pat +qft)

Relative error =
a2t2 e ﬁ2t2

_fla+atb+pt)- f(a,b)

- Ny Ll
:f(a+ort,b+,Bt)4f(a,b)_lm_qJB

t

©® Since a’+p*=1

Assuming p = f,(a, b) and q = fy[a, b), we modify @ as follows:

e f(a+at,b+,6§)—f(a,b+,8t)+f(a,b+ﬁi)—f(a,b)_fx (.8}t - £, (esb) B

Since the derivative of f(x, b + t), a function of x only, at x = a is

f.(a,b+ pt)

we get, from the imitating single-variable linear function,

Sfla+at,b+ pt)- f(a,b+pt)= f (a,b+ pt)at

* We have calculated the imitating linear function in such a way that its relative error
approaches 0 when AP — 0 in the x or y direction. It is not apparent, however, if the relative
error — 0 when AP — 0 in any direction for the linear function that is made up of the deriva-
tives f,(a, b) andfy{a, b). We'll now look into this in detail, although the discussion here will
not be so strict.
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Similarly, for y we get
Sf(a,b+pt)- f(a,b)= f,(a,b) ft
Substituting this in ©,

® = f.(ab+pt)a+ f,(ab)pt-f (a,b)a-f, (ab)p
=(f.(a,b+pt) - f, (a,b))a

Since f.(a, b + pt) - f(a, b) = 0 if t is close enough to 0, the relative
error = ® ~ 0. Thus, we have shown “the relative error — 0 when AP — 0
in any direction.”

It should be noted that f, must be continuous to say f.(a, b + t) - f.(a, b)
= 0 (t = 0). Unless it is continuous, we don’t know whether the derivative
exists in every direction, even though f, and f, exist. Since such functions
are rather exceptional, however, we won’t cover them in this book.

EXAMPLES (FUNCTION OF EXAMPLE 1 FROM PAGE 183)
Let’s find the partial derivatives of h(v, t) = vt — 4.9¢% at (v, t) = (100, 5).
In the v direction, we differentiate h(v, 5) = 5v — 122.5 and get

o
A (v,5)=5
55 *5)

Thus,

%—*1(100,5) =h, (100,5)=5
v

In the t direction, we differentiate h(100, t) = 100t — 4.9t* and get

%’t‘ (100,t) =100 - 9.8t

?—h 100,5)=h, (100,5)=100-9.8 x5 =51
ot :

And the imitating linear function is

L(x,y)=5(v-100)+51(t-5)-377.5
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In general,

on _, oh _

e v-9.8t
du v

Therefore, from © on page 194, near (v, t) = (v,, t,),
h(v,t)=t,(v-v,)+(v, -9.8t,)(t —t,) + h(v,.t,)

Next, we'll try imitating the concentration of sugar syrup given y
grams of sugar in x grams of water.

100
fley)=—=2
x+y
o . 100y
ay * (x+y)2
of 100(x +y)-100yx1  100x
y (x+y) (x+y)

Thus, near (x, y) = (a, b), we have

[T . I

(a+ b)2

100a
(a+ b}2

100b
a+b

(y-b)+

DEFINITION OF PARTIAL DIFFERENTIATION

When z = f(x, y) is partially differentiable with respect to x for every point

(x, y) in a region, the function (x, y) — f.(x, y), which relates (x, y) to f, (x, y),
the partial derivative at that point with respect to x, is called the partial dif-
ferential function of z = f(x, y) with respect to x and can be expressed by any
of the following:

¥ oz
"ox ox

oL (2y)

Similarly, when z = f(x, y) is partially differentiable with respect to y for
every point (x, y) in the region, the function

(x.y) = S, (xy)
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is called the partial differential function of z = f(x, y) with respect to y and is
expressed by any of the following:
¥ oz

fy’fy (x’y)'ay’ay

Obtaining the partial derivatives of a function is called partially
differentiating it.

TOTAL DIFFERENTIALS

TOTAL
PIFFERENTIALS

From the imitating linear function of z = f(x, y) at (x, y) = (a, b), we have
found

f(x.y)= f,(a,b)(x-a)+ f,(a,b)(x -b)+ f(a,b)
We now modify this as

© sixy)-flab)=L(ab)(x-a)+ I (ab)(y-b)

Since f(x, y) — fla, b) means the incre-
ment of z = f(x, y) when a point moves from
(a, b) to (x, y), we write this as Az, as we
did for the single-variable functions.

Also, (x — a) is Ax and (y — b) is Ay.

Then, expression @ can be written as

_ 0z 0z

Az = —Ax+—A
d ox oy ¥

This expression means, “If x increases from a by Ax and y from b by Ay
in z = f(x, y), z increases by

-aEAx+isz
ox dy
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; oz . ’ " s " 5
Since — Ax is “the increment of z in the x direction when y is fixed at b”

0z oX

and 3y Ay is “the increment in the y direction when x is fixed at a,” expres-

sion @ also means “the increment of z = f(x, y) is the sum of the increment
in the x direction and that in the y direction.”
When expression @ is idealized (made instantaneous), we have

0z 0z
© dz=7 "% [ expressioNe OrR e 15
CALLED THE FORMULA OF
or THE TOTAL DIFFERENTIAL.

@ df=fdx+ f,dy

(A has been changed to d.)
The meaning of the formula is as follows.

Increment of height of a curved surface =

Partial derivative & Increment in Partial derivative a Increment in
in the x direction ~ the x direction  in the y direction = the y direction

Now, let’s look at the expression of a total differential from Example 4
(page 183).

By converting the unit properly, we rewrite the equation of temperature
as T = PV.

oT _ d(PV) N i aT _ o(PV)
dP JoP av oP

Thus, the total differential can be written as dT = VdP + PdV.
In the form of an approximate expression, this is AT = VAP + PAV.

THIS MEANS THAT FOR AN IDEAL GAS, THE
INCREMENT OF TEMPERATURE CAN BE
CALCULATED BY THE VOLUME TIMES THE
INCREMENT OF PRESSURE PLUS THE PRESSURE
TIMES THE INCREMENT OF VOLUME.

~

Pressure

T = constant Volume \%
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CONDITIONS FOR EXTREMA

WHAT A VIEW!
SANDA HASN'T
CHANGED AT ALL!

MAXIMUM OH, YOU STARTED

THE LESSON
ALREADY?

IF WE LOOK AT THAT
MOUNTAIN AS A TWO-
VARIABLE FUNCTION, ITS
TOP 15 A MAXIMUM.
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The extrema of a two-variable function f(x, y) are where its graph is at
the top of a mountain or the bottom of a valley.

Maximum
P/
z z
y y
Q@ ¥ Minimum
0 x ¥ 0 x”

Maximum point

p ~
V4
/ Horizontal plane
y U
0

i
>

X

Since the plane tangent to the graph at point P or @ is parallel to the x-y
plane, we should have

f(xy)=p(x-a)+q(y-b)+ f(a,b)

with p = g = 0 in the imitating linear function.
Since

¥

_Y
ox 1=

-5) a-Z

p (=4%)

the condition for extrema’ is, if flx, y) has an extremum at (x, y) = (a, b),

S.(ab)= 1, (ab)=0

g—‘i(a,b)=ai(a,b):0

* The opposite of this is not true. In other words, even if f,(a, b) = f,(a, b) = 0, f will not always
have an extremum at (x, y) = (a, b). Thus, this condition only picks up the candidates for
extrema.
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AT THE EXTREMA OF A TWO-
VARIABLE FUNCTION, THE PARTIAL
DERIVATIVES IN BOTH THE x AND y

PIRECTIONS ARE ZERO.

EXAMPLE
Let’s find the minimum of f(x, y) = (x - y]2 +(y - 2]2. First, we'll find it
algebraically.
Since
2 2
(x-y) 20 (y-2) =0
2
Sf(xy)=(x-y) +(y-2) =0
If we substitute x = y = 2 here,

f(2.2)=(2-2)"+(2-2)°=0

From this, f(x, y) = f(2, 2) for all (x, y). In other words, f(x, y) has a
minimum of zero at (x, y) = (2, 2).

On the other hand, g:z(xfy) and ¥ - 2(x-y)(-1)+2(y-2)=-2x+4y—4.
If we set % %
¥_¥_,
ox oy

and solve these simultaneous equations,
2x-2y=0 '
-2x+4y-4=0

we find that (x, y) = (2, 2), just as we found above.

THE SOLUTIONS ARE
THE SAME!
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APPLYING PARTIAL DIFFERENTIATION TO ECONOMICS

HE WAS A FORMER
ECONOMIST, AND IN
| 1927, He THOUGHT

O 1| ABOUT THE PROBLEM

i ] | OF SHARING NATIONAL
INCOME IN CAPITAL

AND LABOR. A

HOW 15 IT
SHARED?

THERE WAS A SENATOR
FROM ILLINOIS NAMED PAUL
DPOUGLAS WHO SERVED FROM
19449 TO 1966.

10

1 114

THERE ARE ROUGHLY
TWO TYPES OF ROUTES
IN WHICH 6rROS5
POMESTIC PRODPUCT
(GDF), WHICH 15 THE
AMOUNT OF PRODPUCTION
WITHIN A COUNTRY IN
ONE YEAR, 15 SHARED
AMONG THE PEOPLE
OF THE COUNTRY.

THE SECOND IS THE WAY
IN WHICH GDP 15 SHARED
AS STOCK DIVIDENDS TO
THE OWNERS OF CAPITAL,
SUCH AS MACHINERY AND
EQUIPMENT.

THE FIRST ONE IS THE
WAY IN WHICH GDF 15
SHARED AS WAGES
FOR LABOR.
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LABOR AND CAPITAL
SHARES IN THE UNITED
STATES AND FOUND THAT
THEIR RATIO HAD BEEN
ALMOST CONSTANT FOR
ABOUT 40 YEARS.

ABOUT 70 PERCENT (0.7)
OF GDP WAS SHARED
AS WAGES FOR LABOR,
AND 30 PERCENT (0.3
AS STOCK DIVIPENDS TO
CAPITAL OWNERS.,

DOUGLAS STUDIED THE

IT'S STRANGE THAT THE
RATIO WAS CONSTANT,

EVEN THOUGH THE

ECONOMIC SITUATION

WAS CHANGING EVERY
MINUTE.

YOU WANT TO KNOW
WHAT THE PRODPUCTION
FUNCTION f(L, K) THAT

BRINGS THIS RESULT
LOOKS LIKE,
DON'T YOU?

DOUGLAS WAS
TROUBLED TOO, SO HE
ASKED CHARLES COBB, A
MATHEMATICIAN, ABOUT IT.

THE FUNCTION THEY
FOUND |5 THE FAMOUS
COBB-POUGLAS
FUNCTION. BELOW,

L REPRESENTS LABOR,
K REPRESENTS CAPITAL,

AND § AND o ARE
CONSTANTS,

COBB-DOUGLAS FUNCTION

f(L.K)= LK™

AH, WILL YOU TELL ME IN
MORE DETAIL ABOUT MY
WAGES?

OKAY. THIS 1S A GOOD
APPLICATION OF TWO-
VARIABLE FUNCTIONS.
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First, let’s suppose that wages are measured in units of w, and capital
is measured in units of r. We’ll consider the production of the entire coun-
try to be given by the function f(L, K) and assume the country is acting as a
profit-maximizing business. The profit P is given by the equation:

P=f(L,K)-wL-rK

Because we know that a business chooses values of L and K to maximize
profit (P), we get the following condition for extrema:

P 9P _
aL K
o o-P_¥ 2ul) oK) ¥ ¥
dL oL oL oL oL oL
_oP_of OwL) o(K) o o
K OJK dK dK JK oK

The relations far to the right mean the following.

Wages = Partial derivative of the production function
with respect to L

Capital share = Partial derivative of the production function
with respect to K

Now, the reward the people of the country receive for labor is Wage x
Labor = wL. When this is 70 percent of GDP, we have

® wL=0.7f(L,K)
Similarly, the reward the capital owners receive is
@ rK=0.3f(L.K)

From @ and ©,
of
® = xL=07f(L.K

From @ and @,

)
) é%xx - 0.3f (LK)
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Cobb found f(L, K) that satisfies these equations. It is

f(L,K) — ﬁLwKU'S

where f is a positive parameter meaning the level of technology.
Let’s check if this satisfies the above conditions.

a LO.'?KO.S

aixL =———(ﬁ )

oL oL
=0.7pL* K*®
=0.7f(L.K)

xL=0.78L""K** x L'

a L().?KO.S
;iK xK = _(ffﬁ_) x K =0.3BL"" K™ x K!
- O.S'BLO.TKO.S

=0.3f(L,K)

50, PARTIAL DIFFERENTIATION

YES, IT SURELY REVEALED A MYSTERIOUS | ] PARTIAL
DOES. LAW HIDING IN A LARGE- DIFFERENTIATION
SCALE ECONOMY—RULES /S 15 ALIVE AND WELL

THAT DETERMINE A BEHIND THE SCENES,
COUNTRY'S WEALTH. ‘ ISNT IT?
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THE CHAIN RULE

We have seen single-variable composite functions before (page 14).

y=S(x), z=9(y). z=9(f(x)).
g(f(x)) =g (£(x) £ (%)

HERE, LET'S DERIVE THE FORMULA OF
PARTIAL DIFFERENTIATION (THE CHAIN RULE)
FOR MULTIVARIABLE COMPOSITE FUNCTIONS

We assume that z is a two-variable function of x and y, expressed as z =
Sf(x, y), and that x and y are both single-variable functions of t, expressed as
x = a(t) and y = b(t), respectively. Then, z can be expressed as a function of t
only, as shown below.

e s
T .
—b_lTl_—Py—i i

I |

This relationship can be written as
z= f(xy)=f(a(t).b(t))

dz
What is the form of dt then?

We assume aft,) = x,, b(t,) = y, and f(x,, y,) = flalty), b(ty)) = z, when t = t,,
and consider only the vicinities of t,, x,, y,, and z,.

If we obtain an « that satisfies
0 z-z,~ax(t-t,)
o dz

it is dt (to)-
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First, from the approximation of x = a(t),

da
® x-x, :Et"(to)(t_to)
Similarly, from the approximation of y = b(t),
db
© y-u, - ()t

Next, from the formula of total differential for a two-variable function
Jx y),
Ui df

0 z-z,= é‘;(xu'yo)(xfxo)+@(xo'yo)(y_yo)

Substituting ® and © in @,

) da o) db
e Z_Zo:%(xnvyo)'at_(tu)(t_tu)+£(xu'yo)a(t0)(tAt0)
d da dJd db
= %( 0* O)E(to)"'%( o’yo)E(to) (t—to)
Comparing ® and @, we get
dJ da d db
a:éé(xo-yu)z(tu)+5fg(x0’yu)a(t0)

This is what we wanted, and we now have the following formula!

FORMULA 6-1: THE CHAIN RULE
When z= f(x,y),x=a(t),y=>b(t)

dz _dfda  of db

dt odx dt oy dt
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MR. 9EKI, WHY DON'T
1 GIVE YOU A LESSON
NOW?

UH, OKAY. IT'LL
BE FUN TO BE A
STUDENT AGAIN.

HERE, WE HAVE A FACTORY

OKAY! LET'S USE FROM WHICH WASTE 15

AN ENVIRONMENTAL

RELEASED AS A RESULT OF
A MULTIVARIABLE PROBLEM! PRODUCTION OF COMMODITIES.
FUNCTAgNO J_cro THINK THE WASTE SUBSEQUENTLY

POLLUTES THE SEA, CAUSING
A REDUCTION IN THE LOCAL
FISHERMAN'S CATCH.

SUPPOSE THAT x WORKERS
PROPUCE AN AMOUNT OF GO0DS
GIVEN BY f(x). THE FACTORY ALSO

RELEASES WASTE AS GOODS
ARE MADE, WHICH AFFECTS THE
CATCH OF FISH.

THE EFFECT THAT PRODUCTION
ACTIVITIES OF A BUSINESS HAVE
ON OTHER FIELDS WITHOUT
GOING THROUGH THE MARKET,
AS |15 THIS CASE, 1S CALLED AN
EXTERNALITY. IN PARTICULAR,
HARMFUL EXTERNALITIES, SUCH
AS POLLUTION, ARE CALLED
NEGATIVE EXTERNALITIES.

LET'S CALL THE
QUANTITY OF WASTE
b = b(f(x)). NOW...
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We assume that the catch of fish can be expressed as a two-variable
function g(y, b) of the amount of labor y and the amount of waste b.

(The catch g(y, b) decreases as b increases. Thus, £ is negative.)

Since the variable x is contained in g(y, b) = g(y, b(f(x))), production at
the factory influences fisheries without going through the market. This is
an externality.

First, let's see what happens if the factory and the fishery each act (self-
ishly) only for their own benefit. If the wage is w for both of them, the price
of a commodity produced at the factory p and the price of a fish g, the profit
for the factory is given by

® B (x)=pf(x)-wx

Thus, the factory wants to maximize this, and the condition for
extrema is

dP " 7
@ —L=pf(x)-w=0e pf(x)=w
dx
Let s be such x that satisfies this condition. Thus, we have
@ pf(s)=w

This s is the amount of labor employed by the factory, the amount of pro-
duction is f[s), and the amount of waste is given by

b*=b(f(s))
Next, the profit P, for the fishery is given by
P, =qg(y,b)-wy
Since the amount of waste from the factory is given by b* = b( f(s)),

® P,=qg(yb*)-wy

which is practically a single-variable function of y. To maximize P,, we use
only the condition about y for extrema of a two-variable function.

oP, og 9g
—2=q=(y,b*)-w=0s b*) =w
® o qay(y ) qay(y )
Therefore, the optimum amount of labor t to be input satisfies

dg
® q-Z(t,b*)=w
a5, (60")
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IN SUMMARY... j

The production at the factory and the catch in the fishery when they act
freely in this model are given by f(s) and g(t, b*), respectively, where s and ¢t
satisfy the following.

® pf(s)=w
® b*=b(_f(s)),qg%(t,b*):w

NOW, MR, SEKI, LET'S CHECK IF THIS
IS THE BEST RESULT FOR THE WHOLE
SOCIETY. IF WE TAKE BOTH THE FACTORY
AND THE FISHERY INTO ACCOUNT, WE
SHOULD MAXIMIZE THE SUM OF THE
PROFIT FOR BOTH.

P, = pf (x)+ qg(y,b(f(x))) - wx - wy
. .

Since P, is a two-variable function of x and y, the condition for extrema
is given by

o, OB, _,
ox dy

The first partial derivative is obtained as follows.

%% =pf’(x)+ q——ag (y. I:;ch(x))) -w
= o (%) + @22 (y.b (£ (x))) b (£ (%)) S (x) - w
b

(Here, we used the chain rule.)

210 CHAPTER & LET'S LEARN ABOUT PARTIAL DIFFERENTIATION!



Thus,

% o q:;(p+qa—g(y.b(f(x)))b'(f(x)) Flx)=m

ax ob
Similarly,
oP, ag
a—y“:Ot:»qgg(y.b(f(x))): w

Thus, if the optimum amount of labor is S for the factory and T for the
fishery, they satisfy

o (peeBEatENsise) e

ag2(r.b(5(9)) =

Although these equations look complicated, they are really just two-
variable simultaneous equations.

If we compare these equations with equations ® and ®, we find that ®
and @ are different while ® and @ are the same. Then, how do they differ?

® pxf(s)=w

® (p+®)xf(S)=w
As you see here, 9 has appeared in the expression.

Since (v: qg—lg)bf( f(s))] is negative, p + ¥ is smaller than p.

Since f(S) or f'(s) is multiplied to the first part to give the same value w,
f(S) must be larger than f's).

Slope f' is small.

f(x]" Slope f' is large. l

|

NOW, SINCE
THE GRAPH OF
f(x) GENERALLY

LOOKS LIKE THIS,
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WHILE THE BENEFIT OF
THE SOCIETY BASICALLY
REACHES A MAXIMUM AT
THE INTERSECTION OF THE
DEMAND CURVE, WHICH
EXPRESSES SELFISH

ACTIVITIES, ANP THE SUPPLY
CURVE," IT POES NOT HAPPEN
IF A NEGATIVE EXTERNALITY
EXISTS, SUCH AS POLLUTION,
IN THIS CASE.

FOR THE BENEFIT

OF SOCIETY, THE

FACTORY SHOULD
REDUCE PROPUCTION
DOWN TO S FROM s,
THEIR PRODUCTION IN
THE CASE OF PURELY

SELFISH ACTIVITIES.

* 5EE PAGE 105.

50 ARE THERE ANY | &
B00D MEANS TO OTHER, THAN THAT 15
VOLUNTARILY REDUCE /- | TAXATION.
PRODUCTION FROM
BB e
GOVERNMENT
FORCES THE
FACTORY TO REDUCE
PRODUCTION, IT
BECOMES A PLANNED
ECONOMY, OR
SOCIALISM.
[ T 1
C m
| i
TO ALLEVIATE GLOBAL
WARMING, A CARBON TAX,
THE GOVERNMENT THIS I TAXATION ON THE EMISSION |

TAXES THE FACTORY CALLED AN
IN PROPORTION TO  ENVIRONMENTAL

ITS PRODUCTION. TAX.

OF CARBON, 1S ALSO
BEING DISCUSSED.
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LET'S ASSUME THAT THE
TAX ON A UNIT COMMODITY
PRODUCED AT THE
FACTORY 15
-9,

e ]

=525/ (5)

THIS 1S A POSITIVE CONSTANT.

THEN, THE PROFIT @ IN
THE CASE OF SELFISH
ACTVITIES BECOMES
LIKE THIS.

@ P (x)=pf(x)-wx-(-»f(x))

THE CONDITION
FOR EXTREMA THAT
MAXIMIZE THIS 15...

SINCE ® IS THE SAME EQUATION
AS @, THE PRODUCTION AT THE
FACTORY NOW MAXIMIZES THE

BENEFIT FOR SOCIETY.

ORDINARY TAXES
(INCOME TAX,
CONSUMPTION TAX)
ARE FOR PUBLIC
INVESTMENT...

AN ENVIRONMENTAL HAVE YOU GOT IT,
TAX IS FOR MR. SEKIZ
MAINTAINING A

HEALTHY ENVIRONMENT
BY CONTROLLING
THE ECONOMY.
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TEACHER.

N
WX,
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NORIKO'S APARTMENT
A FEW DAYS LATER

I THINK T'M ALMOST
DONE PACKING.

NORIKO, HERE
YOU ARE.

AN ASSIGNMENT
LETTER...ME,
TOO? YOU'RE NOT
THE ONLY ONE
LEAVING?

FUTOSHI, ACTUALLY, THE PAPER
TOO. DECIPED TO CLOSE
THE SANDA-CHO
OFFICE.
I ALREADY
TOLD HIM.
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YOU WILL BE

NOTIFIED SOON I NEVER
WHERE YOU ARE NED I'D BE I DIPN'T EVEN KNOW
GOING. IMAGI OUR COMPANY HAD
GOING TO WORK AN OKINAWA OFFICE.
IN OKINAWA.

TRANSFER TO
OKINAWA

THIS IS A FAREWELL
PRESENT FOR
YOU. WRITE GOOD
ARTICLES WITH THIS.
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Burnham
Chemical
Apologizes
Ox Bay Pollution

Reconciliation
with Fishery
Cooperative
Expected

AUIOUO0O7 PUE JUSWUOIIAUY SILIIS

GOODBYE...
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DERIVATIVES OF IMPLICIT FUNCTIONS

A point (x, y) for which a two-variable function f(x, y) is equal to constant ¢
describes a graph given by f(x, y) = c. When a part of the graph is viewed as a
single-variable function y = h(x), it is called an implicit function. An implicit
function h(x) satisfies f(x, h(x)) = ¢ for all x defined. We are going to obtain
h(x) here.

When z = f(x, y), the formula of total differentials is written as dz = f,.dx +
J,dy. If (x, y) moves on the graph of f(x, y) = ¢, the value of the function f(x, y)
does not change, and the increment of z is 0, that is, dz = 0. Then, we get
0 = fdx + f dy. Assuming f, # 0 and modifying this, we get

dy __J

ax  f

The left side of this equation is the ideal expression of the increment
of y divided by the increment of x at a point on the graph. It is exactly the
derivative of h(x). Thus,

EXAMPLE
Jx, y) = r’, where Slx, y) = X+ y2, describes a circle of radius r centered
at the origin. Near a point that satisfies X2 rg, we can solve f(x, y) = o
y® = 1 to find the implicit function y = h(x) = rP-xory-= h(x)=-—r’-x*.
Then, from the formula, the derivative of these functions is given by
h’(x) = _L = =
S,y

EXERCISES
1. Obtain f, and f, for f(x, y) = x* + 2xy + 3y”.

2. Under the gravitational acceleration g, the period T of a pendulum hav-
ing length L is given by

T=2:'r\/E
g

(the gravitational acceleration g is known to vary depending on the
height from the ground).

Obtain the expression for total differential of T.

If L is elongated by 1 percent and g decreases by 2 percent, about
what percentage does T increase?

3. Using the chain rule, calculate the differential formula of the implicit
function h(x) of f(x, y) = c in a different way than above.
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EPILOGUE:
WHAT IS MATHEMATICS FOR?

o
i
d
(i
e

(i
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PHEW, [T’ HOT!

NO MATTER WHERE
THEY PUT ME, TLL DO
MY BEST.

WELL, WHERE 1S
THE ASAGAKE
TIMES OKINAWA
OFFICE?




THIS SITUATION
LOOKS ALL TOO
FAMILIAR TO ME!!

Youz!?

YOU AREN'T

NO WAY!
THE HEAD OF 1 JUST GOT
THIS OFFICE, HERE FROM
ARE YouzI?

THE AIRPORT,

CH, THAT'S
©o0p!

\\\

\\\\\\ A ;}\\&\\ \\

\ngg\ ONE\\\

555 0\'5
\.

WHO IS IN CHARGE
OF THIS OFFICE?

WHAT 15 MATHEMATICS FOR? 221



OH, HE 15 ALWAYS
SWIMMING.

EXCUSE ME, PO
YOU KNOW WHERE
THE PERSON IN
CHARGE |57

THERE YOU ARE!
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¥4,

MR. SEKI!!

gt

MR. sEKI!!

WOO! I'M

1 DECIDED TO E
SPEND ONE MORE S\%gﬁgﬁ@ﬁg

YEAR THINKING OKINAWA!!

ABOUT THINGS IN
A WARM PLACE.

OH, REALLY?

MR. 5EKI, I HAVE
DISCOVERED THE
PURPOSE OF
MATHEMATICS.
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TO CONVEY THINGS
THAT CANNOT BE
CONVEYED IN WORDS,

WELL, THEN, NORIKO,
SUPPOSE THE
HORIZON |5 THE
X-AXIS... WHAT ARE WE
GOING TO EAT
TONIGHT? MMMM,
NOODLES SOUND

TOMORROW WILL
BE ANOTHER
GREAT DAY.
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A

SOLUTIONS TO EXERCISES

PROLOGUE

1. Substituting

yzg(x—32) inz=7y730,z:39—5(x—32)—30

CHAPTER 1
. A f(B) =g(5) =50
B. f15)=8
- limf(a+5)—f(a) :]im(a+8)3 — =lim3a28 +3ag® + ¢°
&—0 g £—=0 = e—0 £

- 1im(:3a2 +3ac + .92): 3a?
£—0

Thus, the derivative of f(x) is f(x) = 3x°.

CHAPTER 2

1.  The solution is




2. f'(x)=38x*-12=3(x-2)(x+2)

When x < -2, f(x) > 0, when -2 < x < 2, f(x) < 0, and when x > 2, f'(x)
> 0. Thus at x = -2, we have a maximum with f(-2) = 16, and at x = 2, we
have a maximum with f(2) = -16.

3 Since f(x) = (1 - x)° is a function g(h(x)) combining g(x) = x’ and h(x) =
1-x.

F(%) =g (h(x)R'(x) =8(1-x)" (-1)=-3(1-x)

4 Differentiating g(x) = x*(1 - x)° gives
g9 g

’ ’,

(x)= (xz) (1-x)" +2° ((l—x)s)

)
=2x(1-x)" +x° (—3(1 —x)z)

©

g'(x)=0 when ng or x=1, and g(1)=0.

Thus it has the maximum g 2 = A08 a
5) 3125

CHAPTER 3

1.  The solutions are

o J‘33x2d‘x=x3‘3:33713 - 26
1 1

3
[t ax= e g = o [ rax

:l(42,22)_ 1.2).25
2 4 4 4

3] J':x+(1+xE)de+_[:x—(}i.atxzfdx:KZxdx:S2 -0°=25
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2. A The area between the graph of y = f(x) = x> - 3x and the x-axis equals

—f;xz—Bxdx
Y P 15 2 |® 3 3 2 2
B. ~j0x —3xdx=—[§x Agx JO-—;(s -0%)+=(3*-0 )=§
CHAPTER 4

1.  The solution is

(tanx)' :( sin x J’ _ (sin x)' cosx —sinx(cosx),

cos x cos’ x
_cos’x+sin’x 1
cos® x cos® x
2. Since
’ 1
(tanx) = -
cos® x
T
= 1 T
[+——dax=tanZ —tano =1
0 cos® x 4
3. From

’ ’

F'(x)=(x) e* +x(e*) =e* +xe* =(1+x)e*

the minimum is

Setting f(x) = x*> and g(x) = 1n x, integrate by parts.

f(xz )’ In xdx + ‘l.:x2 (In x)'dx =e’lne-1nl
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Thus,

J.le 2x 1n xdx ~irj'l€x2 %dx =e?

Ile2x1nxdx = »_[:xder e? =,%(92 71)2 i

P |
=—e’+—
2 2

CHAPTER 5

1. For

Sx)=€™ f'(x)=-e* f'(x)=e™, f"(x)= e~
F(0)=1,§(0)=-1, f(0) =1, £7(0) = -1...

z. Differentiate

S (x)
S (x)

Il

(cosx)_l f'(x)=(cos x)f2 sin x

(cos x)_3 (sinx)” +(cos x)_2 cos x

=9
=2(cos x)g3 (sin x)2 +(cos x)f1

from f(0)=1,f'(0)=0,f"(0)=1

3. Proceed in exactly the same way as on page 155 by differentiating f(x)
repeatedly. Since you are centering the expansion around x = a, plugging
in a will let you work out the ¢,s. You should get ¢, = 1/n! f™(a), as
shown in the formula on page 159.
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1. For flx, y) = X+ 2xy + 3y2,fx =2x+ 2y, and f, = 2x + 6y.

The total differential of

11
T=27r\/z—2rrg 22
g

is given by

2.

3 1 o V. |

dT = a—ng +(?—TdL =-ng 2L?dg + ng 2L ?dL
og oL

Thus,

3 1 il 1

AT = -rg ?L*Ag + g *L AL

Substituting Ag = -0.02g, AL = 0.01L, we get

3 1 1 1

AT ~0.027g 2L?g + 0.01zg %L L
!
=0.037g 2L? = 0.03% =0.015T

So T increases by 1.5%.

3. If we suppose y = h(x) is the implicit function of f(x, y) = c.
Thus, since the left side is a constant in this region, f(x, h(x)) = ¢
near Xx.

From the chain rule formula

Yo sisnix-o

dx
Therefore
/ 1,
h'(x)=-=%
()=~
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